linuxptp/util.c

752 lines
16 KiB
C

/**
* @file util.c
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <arpa/inet.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "address.h"
#include "phc.h"
#include "print.h"
#include "sk.h"
#include "util.h"
#define NS_PER_SEC 1000000000LL
#define NS_PER_HOUR (3600 * NS_PER_SEC)
#define NS_PER_DAY (24 * NS_PER_HOUR)
static int running = 1;
const char *ps_str[] = {
"NONE",
"INITIALIZING",
"FAULTY",
"DISABLED",
"LISTENING",
"PRE_MASTER",
"MASTER",
"PASSIVE",
"UNCALIBRATED",
"SLAVE",
"GRAND_MASTER",
};
const char *ev_str[] = {
"NONE",
"POWERUP",
"INITIALIZE",
"DESIGNATED_ENABLED",
"DESIGNATED_DISABLED",
"FAULT_CLEARED",
"FAULT_DETECTED",
"STATE_DECISION_EVENT",
"QUALIFICATION_TIMEOUT_EXPIRES",
"ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES",
"SYNCHRONIZATION_FAULT",
"MASTER_CLOCK_SELECTED",
"INIT_COMPLETE",
"RS_MASTER",
"RS_GRAND_MASTER",
"RS_SLAVE",
"RS_PASSIVE",
};
const char *ts_str(enum timestamp_type ts)
{
switch (ts) {
case TS_SOFTWARE:
return "SOFTWARE";
case TS_HARDWARE:
return "HARDWARE";
case TS_LEGACY_HW:
return "LEGACY_HW";
case TS_ONESTEP:
return "ONESTEP";
case TS_P2P1STEP:
return "P2P1STEP";
}
return "???";
}
int addreq(enum transport_type type, struct address *a, struct address *b)
{
void *bufa, *bufb;
int len;
switch (type) {
case TRANS_UDP_IPV4:
bufa = &a->sin.sin_addr;
bufb = &b->sin.sin_addr;
len = sizeof(a->sin.sin_addr);
break;
case TRANS_UDP_IPV6:
bufa = &a->sin6.sin6_addr;
bufb = &b->sin6.sin6_addr;
len = sizeof(a->sin6.sin6_addr);
break;
case TRANS_IEEE_802_3:
bufa = &a->sll.sll_addr;
bufb = &b->sll.sll_addr;
len = MAC_LEN;
break;
case TRANS_UDS:
case TRANS_DEVICENET:
case TRANS_CONTROLNET:
case TRANS_PROFINET:
default:
pr_err("sorry, cannot compare addresses for this transport");
return 0;
}
return memcmp(bufa, bufb, len) == 0 ? 1 : 0;
}
char *bin2str_impl(Octet *data, int len, char *buf, int buf_len)
{
int i, offset = 0;
if (len > MAX_PRINT_BYTES)
len = MAX_PRINT_BYTES;
buf[0] = '\0';
if (!data)
return buf;
if (len)
offset += snprintf(buf, buf_len, "%02hhx", data[0]);
for (i = 1; i < len; i++) {
if (offset >= buf_len)
/* truncated output */
break;
offset += snprintf(buf + offset, buf_len - offset, ":%02hhx", data[i]);
}
return buf;
}
char *cid2str(struct ClockIdentity *id)
{
static char buf[64];
unsigned char *ptr = id->id;
snprintf(buf, sizeof(buf), "%02x%02x%02x.%02x%02x.%02x%02x%02x",
ptr[0], ptr[1], ptr[2], ptr[3],
ptr[4], ptr[5], ptr[6], ptr[7]);
return buf;
}
int count_char(const char *str, char c)
{
int num = 0;
char s;
while ((s = *(str++))) {
if (s == c)
num++;
}
return num;
}
char *pid2str(struct PortIdentity *id)
{
static char buf[64];
unsigned char *ptr = id->clockIdentity.id;
snprintf(buf, sizeof(buf), "%02x%02x%02x.%02x%02x.%02x%02x%02x-%hu",
ptr[0], ptr[1], ptr[2], ptr[3],
ptr[4], ptr[5], ptr[6], ptr[7],
id->portNumber);
return buf;
}
char *portaddr2str(struct PortAddress *addr)
{
static char buf[BIN_BUF_SIZE];
switch (align16(&addr->networkProtocol)) {
case TRANS_UDP_IPV4:
if (align16(&addr->addressLength) == 4
&& inet_ntop(AF_INET, addr->address, buf, sizeof(buf)))
return buf;
break;
case TRANS_UDP_IPV6:
if (align16(&addr->addressLength) == 16
&& inet_ntop(AF_INET6, addr->address, buf, sizeof(buf)))
return buf;
break;
}
bin2str_impl(addr->address, align16(&addr->addressLength), buf, sizeof(buf));
return buf;
}
void posix_clock_close(clockid_t clock)
{
if (clock == CLOCK_REALTIME) {
return;
}
phc_close(clock);
}
clockid_t posix_clock_open(const char *device, int *phc_index)
{
struct sk_ts_info ts_info;
char phc_device[19];
int clkid;
/* check if device is CLOCK_REALTIME */
if (!strcasecmp(device, "CLOCK_REALTIME")) {
return CLOCK_REALTIME;
}
/* check if device is valid phc device */
clkid = phc_open(device);
if (clkid != CLOCK_INVALID) {
if (!strncmp(device, "/dev/ptp", strlen("/dev/ptp"))) {
int r = get_ranged_int(device + strlen("/dev/ptp"),
phc_index, 0, 65535);
if (r) {
fprintf(stderr,
"failed to parse PHC index from %s\n",
device);
return -1;
}
}
return clkid;
}
/* check if device is a valid ethernet device */
if (sk_get_ts_info(device, &ts_info) || !ts_info.valid) {
pr_err("unknown clock %s: %m", device);
return CLOCK_INVALID;
}
if (ts_info.phc_index < 0) {
pr_err("interface %s does not have a PHC", device);
return CLOCK_INVALID;
}
snprintf(phc_device, sizeof(phc_device), "/dev/ptp%d", ts_info.phc_index);
clkid = phc_open(phc_device);
if (clkid == CLOCK_INVALID) {
pr_err("cannot open %s for %s: %m", phc_device, device);
}
*phc_index = ts_info.phc_index;
return clkid;
}
int str2addr(enum transport_type type, const char *s, struct address *addr)
{
unsigned char mac[MAC_LEN];
struct in_addr ipv4_addr;
struct in6_addr ipv6_addr;
memset(addr, 0, sizeof(*addr));
switch (type) {
case TRANS_UDS:
case TRANS_DEVICENET:
case TRANS_CONTROLNET:
case TRANS_PROFINET:
pr_err("sorry, cannot convert addresses for this transport");
return -1;
case TRANS_UDP_IPV4:
if (!inet_aton(s, &ipv4_addr)) {
pr_err("bad IPv4 address");
return -1;
}
addr->sin.sin_family = AF_INET;
addr->sin.sin_addr = ipv4_addr;
addr->len = sizeof(addr->sin);
break;
case TRANS_UDP_IPV6:
if (1 != inet_pton(AF_INET6, s, &ipv6_addr)) {
pr_err("bad IPv6 address");
return -1;
}
addr->sin6.sin6_family = AF_INET6;
addr->sin6.sin6_addr = ipv6_addr;
addr->len = sizeof(addr->sin6);
break;
case TRANS_IEEE_802_3:
if (str2mac(s, mac)) {
pr_err("bad Layer-2 address");
return -1;
}
addr->sll.sll_family = AF_PACKET;
addr->sll.sll_halen = MAC_LEN;
memcpy(&addr->sll.sll_addr, mac, MAC_LEN);
addr->len = sizeof(addr->sll);
break;
}
return 0;
}
int str2mac(const char *s, unsigned char mac[MAC_LEN])
{
unsigned char buf[MAC_LEN];
int c;
c = sscanf(s, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&buf[0], &buf[1], &buf[2], &buf[3], &buf[4], &buf[5]);
if (c != MAC_LEN) {
return -1;
}
memcpy(mac, buf, MAC_LEN);
return 0;
}
int str2cid(const char *s, struct ClockIdentity *result)
{
struct ClockIdentity cid;
unsigned char *ptr = cid.id;
int c;
c = sscanf(s, " %02hhx%02hhx%02hhx.%02hhx%02hhx.%02hhx%02hhx%02hhx",
&ptr[0], &ptr[1], &ptr[2], &ptr[3],
&ptr[4], &ptr[5], &ptr[6], &ptr[7]);
if (c == 8) {
*result = cid;
return 0;
}
return -1;
}
int str2pid(const char *s, struct PortIdentity *result)
{
struct PortIdentity pid;
unsigned char *ptr = pid.clockIdentity.id;
int c;
c = sscanf(s, " %02hhx%02hhx%02hhx.%02hhx%02hhx.%02hhx%02hhx%02hhx-%hu",
&ptr[0], &ptr[1], &ptr[2], &ptr[3],
&ptr[4], &ptr[5], &ptr[6], &ptr[7],
&pid.portNumber);
if (c == 9) {
*result = pid;
return 0;
}
return -1;
}
int generate_clock_identity(struct ClockIdentity *ci, const char *name)
{
struct address addr;
if (sk_interface_macaddr(name, &addr))
return -1;
switch (addr.sll.sll_halen) {
case EUI48:
ci->id[0] = addr.sll.sll_addr[0];
ci->id[1] = addr.sll.sll_addr[1];
ci->id[2] = addr.sll.sll_addr[2];
ci->id[3] = 0xFF;
ci->id[4] = 0xFE;
ci->id[5] = addr.sll.sll_addr[3];
ci->id[6] = addr.sll.sll_addr[4];
ci->id[7] = addr.sll.sll_addr[5];
break;
case EUI64:
ci->id[0] = addr.sll.sll_addr[0];
ci->id[1] = addr.sll.sll_addr[1];
ci->id[2] = addr.sll.sll_addr[2];
ci->id[3] = addr.sll.sll_addr[3];
ci->id[4] = addr.sll.sll_addr[4];
ci->id[5] = addr.sll.sll_addr[5];
ci->id[6] = addr.sll.sll_addr[6];
ci->id[7] = addr.sll.sll_addr[7];
break;
default:
return -1;
}
return 0;
}
/* Naive count of utf8 symbols. Doesn't detect invalid UTF-8 and
* probably doesn't count combining characters correctly. */
static size_t strlen_utf8(const Octet *s)
{
size_t len = 0;
char c;
while ((c = *(s++))) {
if ((c & 0xC0) != 0x80)
len++;
}
return len;
}
int static_ptp_text_copy(struct static_ptp_text *dst, const struct PTPText *src)
{
int len = src->length;
if (dst->max_symbols > 0 && strlen_utf8(src->text) > dst->max_symbols)
return -1;
dst->length = len;
memcpy(dst->text, src->text, len);
dst->text[len] = '\0';
return 0;
}
void ptp_text_copy(struct PTPText *dst, const struct static_ptp_text *src)
{
dst->length = src->length;
memcpy(dst->text, src->text, src->length);
}
int ptp_text_set(struct PTPText *dst, const char *src)
{
size_t len;
if (src) {
len = strlen(src);
if (len > MAX_PTP_OCTETS)
return -1;
dst->length = len;
memcpy(dst->text, src, len);
} else {
dst->length = 0;
}
return 0;
}
int static_ptp_text_set(struct static_ptp_text *dst, const char *src)
{
int len = strlen(src);
if (len > MAX_PTP_OCTETS)
return -1;
if (dst->max_symbols > 0 && strlen_utf8((Octet *) src) > dst->max_symbols)
return -1;
dst->length = len;
memcpy(dst->text, src, len);
dst->text[len] = '\0';
return 0;
}
int is_utc_ambiguous(uint64_t ts)
{
/* The Linux kernel inserts leap second by stepping the clock backwards
at 0:00 UTC, the last second before midnight is played twice. */
if (NS_PER_DAY - ts % NS_PER_DAY <= NS_PER_SEC)
return 1;
return 0;
}
int leap_second_status(uint64_t ts, int leap_set, int *leap, int *utc_offset)
{
int leap_status = leap_set;
/* The leap bits obtained by PTP should be set at most 12 hours before
midnight and unset at most 2 announce intervals after midnight.
Split updates which are too early and which are too late at 6 hours
after midnight. */
if (ts % NS_PER_DAY > 6 * NS_PER_HOUR) {
if (!leap_status)
leap_status = *leap;
} else {
if (leap_status)
leap_status = 0;
}
/* Fix early or late update of leap and utc_offset. */
if (!*leap && leap_status) {
*utc_offset -= leap_status;
*leap = leap_status;
} else if (*leap && !leap_status) {
*utc_offset += *leap;
*leap = leap_status;
}
return leap_status;
}
enum parser_result get_ranged_int(const char *str_val, int *result,
int min, int max)
{
long parsed_val;
char *endptr = NULL;
errno = 0;
parsed_val = strtol(str_val, &endptr, 0);
if (*endptr != '\0' || endptr == str_val)
return MALFORMED;
if (errno == ERANGE || parsed_val < min || parsed_val > max)
return OUT_OF_RANGE;
*result = parsed_val;
return PARSED_OK;
}
enum parser_result get_ranged_uint(const char *str_val, unsigned int *result,
unsigned int min, unsigned int max)
{
unsigned long parsed_val;
char *endptr = NULL;
errno = 0;
parsed_val = strtoul(str_val, &endptr, 0);
if (*endptr != '\0' || endptr == str_val)
return MALFORMED;
if (errno == ERANGE || parsed_val < min || parsed_val > max)
return OUT_OF_RANGE;
*result = parsed_val;
return PARSED_OK;
}
enum parser_result get_ranged_double(const char *str_val, double *result,
double min, double max)
{
double parsed_val;
char *endptr = NULL;
errno = 0;
parsed_val = strtod(str_val, &endptr);
if (*endptr != '\0' || endptr == str_val)
return MALFORMED;
if (errno == ERANGE || parsed_val < min || parsed_val > max)
return OUT_OF_RANGE;
*result = parsed_val;
return PARSED_OK;
}
int get_arg_val_i(int op, const char *optarg, int *val, int min, int max)
{
enum parser_result r;
r = get_ranged_int(optarg, val, min, max);
if (r == MALFORMED) {
fprintf(stderr,
"-%c: %s is a malformed value\n", op, optarg);
return -1;
}
if (r == OUT_OF_RANGE) {
fprintf(stderr,
"-%c: %s is out of range. Must be in the range %d to %d\n",
op, optarg, min, max);
return -1;
}
return 0;
}
int get_arg_val_ui(int op, const char *optarg, unsigned int *val,
unsigned int min, unsigned int max)
{
enum parser_result r;
r = get_ranged_uint(optarg, val, min, max);
if (r == MALFORMED) {
fprintf(stderr,
"-%c: %s is a malformed value\n", op, optarg);
return -1;
}
if (r == OUT_OF_RANGE) {
fprintf(stderr,
"-%c: %s is out of range. Must be in the range %u to %u\n",
op, optarg, min, max);
return -1;
}
return 0;
}
int get_arg_val_d(int op, const char *optarg, double *val,
double min, double max)
{
enum parser_result r;
r = get_ranged_double(optarg, val, min, max);
if (r == MALFORMED) {
fprintf(stderr,
"-%c: %s is a malformed value\n", op, optarg);
return -1;
}
if (r == OUT_OF_RANGE) {
fprintf(stderr,
"-%c: %s is out of range. Must be in the range %e to %e\n",
op, optarg, min, max);
return -1;
}
return 0;
}
static void handle_int_quit_term(int s)
{
running = 0;
}
int handle_term_signals(void)
{
if (SIG_ERR == signal(SIGINT, handle_int_quit_term)) {
fprintf(stderr, "cannot handle SIGINT\n");
return -1;
}
if (SIG_ERR == signal(SIGQUIT, handle_int_quit_term)) {
fprintf(stderr, "cannot handle SIGQUIT\n");
return -1;
}
if (SIG_ERR == signal(SIGTERM, handle_int_quit_term)) {
fprintf(stderr, "cannot handle SIGTERM\n");
return -1;
}
return 0;
}
int is_running(void)
{
return running;
}
void *xmalloc(size_t size)
{
void *r;
r = malloc(size);
if (!r) {
pr_err("failed to allocate memory");
exit(1);
}
return r;
}
void *xcalloc(size_t nmemb, size_t size)
{
void *r;
r = calloc(nmemb, size);
if (!r) {
pr_err("failed to allocate memory");
exit(1);
}
return r;
}
void *xrealloc(void *ptr, size_t size)
{
void *r;
r = realloc(ptr, size);
if (!r) {
pr_err("failed to allocate memory");
exit(1);
}
return r;
}
char *xstrdup(const char *s)
{
void *r;
r = strdup(s);
if (!r) {
pr_err("failed to allocate memory");
exit(1);
}
return r;
}
char *string_newf(const char *format, ...)
{
va_list ap;
char *s;
va_start(ap, format);
if (vasprintf(&s, format, ap) < 0) {
pr_err("failed to allocate memory");
exit(1);
}
va_end(ap);
return s;
}
void string_append(char **s, const char *str)
{
size_t len1, len2;
len1 = strlen(*s);
len2 = strlen(str);
*s = xrealloc(*s, len1 + len2 + 1);
memcpy((*s) + len1, str, len2 + 1);
}
void string_appendf(char **s, const char *format, ...)
{
va_list ap;
size_t len1;
int len2;
char *s2;
len1 = strlen(*s);
va_start(ap, format);
len2 = vasprintf(&s2, format, ap);
va_end(ap);
if (len2 < 0) {
*s = NULL;
return;
}
*s = xrealloc(*s, len1 + len2 + 1);
memcpy((*s) + len1, s2, len2 + 1);
free(s2);
}
void **parray_new(void)
{
void **a;
a = xmalloc(sizeof(*a));
*a = NULL;
return a;
}
void parray_append(void ***a, void *p)
{
parray_extend(a, p, NULL);
}
void parray_extend(void ***a, ...)
{
va_list ap;
int ilen, len, alloced;
void *p;
for (len = 0; (*a)[len]; len++)
;
len++;
va_start(ap, a);
for (ilen = 0; va_arg(ap, void *); ilen++)
;
va_end(ap);
/* Reallocate in exponentially increasing sizes. */
for (alloced = 1; alloced < len; alloced <<= 1)
;
if (alloced < len + ilen) {
while (alloced < len + ilen)
alloced *= 2;
*a = xrealloc(*a, alloced * sizeof **a);
}
va_start(ap, a);
while ((p = va_arg(ap, void *)))
(*a)[len++ - 1] = p;
va_end(ap);
(*a)[len - 1] = NULL;
}
int rate_limited(int interval, time_t *last)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts))
return 1;
if (*last + interval > ts.tv_sec)
return 1;
*last = ts.tv_sec;
return 0;
}