linuxptp/phc2sys.c

1345 lines
32 KiB
C

/**
* @file phc2sys.c
* @brief Utility program to synchronize two clocks via a PPS.
* @note Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <net/if.h>
#include <poll.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/pps.h>
#include <linux/ptp_clock.h>
#include "clockadj.h"
#include "clockcheck.h"
#include "contain.h"
#include "ds.h"
#include "fsm.h"
#include "missing.h"
#include "notification.h"
#include "ntpshm.h"
#include "phc.h"
#include "pi.h"
#include "pmc_common.h"
#include "print.h"
#include "servo.h"
#include "sk.h"
#include "stats.h"
#include "sysoff.h"
#include "tlv.h"
#include "uds.h"
#include "util.h"
#include "version.h"
#define KP 0.7
#define KI 0.3
#define NS_PER_SEC 1000000000LL
#define PHC_PPS_OFFSET_LIMIT 10000000
struct clock {
LIST_ENTRY(clock) list;
LIST_ENTRY(clock) dst_list;
clockid_t clkid;
int phc_index;
int sysoff_method;
int is_utc;
int dest_only;
int state;
int new_state;
int sync_offset;
int leap_set;
int utc_offset_set;
struct servo *servo;
enum servo_state servo_state;
char *device;
const char *source_label;
struct stats *offset_stats;
struct stats *freq_stats;
struct stats *delay_stats;
struct clockcheck *sanity_check;
};
struct port {
LIST_ENTRY(port) list;
unsigned int number;
int state;
struct clock *clock;
};
struct phc2sys_private {
unsigned int stats_max_count;
int sanity_freq_limit;
enum servo_type servo_type;
int phc_readings;
double phc_interval;
int forced_sync_offset;
int kernel_leap;
int state_changed;
struct pmc_node node;
LIST_HEAD(port_head, port) ports;
LIST_HEAD(clock_head, clock) clocks;
LIST_HEAD(dst_clock_head, clock) dst_clocks;
struct clock *master;
};
static struct config *phc2sys_config;
static int clock_handle_leap(struct phc2sys_private *priv,
struct clock *clock,
int64_t offset, uint64_t ts);
static int normalize_state(int state);
static struct servo *servo_add(struct phc2sys_private *priv,
struct clock *clock)
{
double ppb;
int max_ppb;
struct servo *servo;
clockadj_init(clock->clkid);
ppb = clockadj_get_freq(clock->clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(clock->clkid, ppb);
if (clock->clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(clock->clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return NULL;
}
}
servo = servo_create(phc2sys_config, priv->servo_type,
-ppb, max_ppb, 0);
if (!servo) {
pr_err("Failed to create servo");
return NULL;
}
servo_sync_interval(servo, priv->phc_interval);
return servo;
}
static struct clock *clock_add(struct phc2sys_private *priv, char *device)
{
struct clock *c;
clockid_t clkid = CLOCK_INVALID;
int phc_index = -1;
if (device) {
clkid = posix_clock_open(device, &phc_index);
if (clkid == CLOCK_INVALID)
return NULL;
}
c = calloc(1, sizeof(*c));
if (!c) {
pr_err("failed to allocate memory for a clock");
return NULL;
}
c->clkid = clkid;
c->phc_index = phc_index;
c->servo_state = SERVO_UNLOCKED;
c->device = device ? strdup(device) : NULL;
if (c->clkid == CLOCK_REALTIME) {
c->source_label = "sys";
c->is_utc = 1;
} else {
c->source_label = "phc";
}
if (priv->stats_max_count > 0) {
c->offset_stats = stats_create();
c->freq_stats = stats_create();
c->delay_stats = stats_create();
if (!c->offset_stats ||
!c->freq_stats ||
!c->delay_stats) {
pr_err("failed to create stats");
return NULL;
}
}
if (priv->sanity_freq_limit) {
c->sanity_check = clockcheck_create(priv->sanity_freq_limit);
if (!c->sanity_check) {
pr_err("failed to create clock check");
return NULL;
}
}
if (clkid != CLOCK_INVALID)
c->servo = servo_add(priv, c);
if (clkid != CLOCK_INVALID && clkid != CLOCK_REALTIME)
c->sysoff_method = sysoff_probe(CLOCKID_TO_FD(clkid),
priv->phc_readings);
LIST_INSERT_HEAD(&priv->clocks, c, list);
return c;
}
static void clock_cleanup(struct phc2sys_private *priv)
{
struct clock *c, *tmp;
LIST_FOREACH_SAFE(c, &priv->clocks, list, tmp) {
if (c->servo) {
servo_destroy(c->servo);
}
if (c->sanity_check) {
clockcheck_destroy(c->sanity_check);
}
if (c->delay_stats) {
stats_destroy(c->delay_stats);
}
if (c->freq_stats) {
stats_destroy(c->freq_stats);
}
if (c->offset_stats) {
stats_destroy(c->offset_stats);
}
if (c->device) {
free(c->device);
}
free(c);
}
}
static void port_cleanup(struct phc2sys_private *priv)
{
struct port *p, *tmp;
LIST_FOREACH_SAFE(p, &priv->ports, list, tmp) {
free(p);
}
}
static struct port *port_get(struct phc2sys_private *priv, unsigned int number)
{
struct port *p;
LIST_FOREACH(p, &priv->ports, list) {
if (p->number == number)
return p;
}
return NULL;
}
static struct port *port_add(struct phc2sys_private *priv, unsigned int number,
char *device)
{
struct port *p;
struct clock *c = NULL, *tmp;
p = port_get(priv, number);
if (p)
return p;
/* port is a new one, look whether we have the device already on
* a different port */
LIST_FOREACH(tmp, &priv->clocks, list) {
if (!strcmp(tmp->device, device)) {
c = tmp;
break;
}
}
if (!c) {
c = clock_add(priv, device);
if (!c)
return NULL;
}
p = malloc(sizeof(*p));
if (!p) {
pr_err("failed to allocate memory for a port");
return NULL;
}
p->number = number;
p->clock = c;
LIST_INSERT_HEAD(&priv->ports, p, list);
return p;
}
static void clock_reinit(struct phc2sys_private *priv, struct clock *clock,
int new_state)
{
int phc_index = -1, phc_switched = 0;
int state, timestamping, ret = -1;
struct port *p;
struct servo *servo;
struct sk_ts_info ts_info;
char iface[IFNAMSIZ];
clockid_t clkid = CLOCK_INVALID;
LIST_FOREACH(p, &priv->ports, list) {
if (p->clock == clock) {
ret = run_pmc_port_properties(&priv->node, 1000, p->number,
&state, &timestamping,
iface);
if (ret > 0)
p->state = normalize_state(state);
}
}
if (ret > 0 && timestamping != TS_SOFTWARE) {
/* Check if device changed */
if (strcmp(clock->device, iface)) {
free(clock->device);
clock->device = strdup(iface);
}
/* Check if phc index changed */
if (!sk_get_ts_info(clock->device, &ts_info) &&
clock->phc_index != ts_info.phc_index) {
clkid = posix_clock_open(clock->device, &phc_index);
if (clkid == CLOCK_INVALID)
return;
posix_clock_close(clock->clkid);
clock->clkid = clkid;
clock->phc_index = phc_index;
servo = servo_add(priv, clock);
if (servo) {
servo_destroy(clock->servo);
clock->servo = servo;
}
phc_switched = 1;
}
}
if (new_state == PS_MASTER || phc_switched) {
servo_reset(clock->servo);
clock->servo_state = SERVO_UNLOCKED;
if (clock->offset_stats) {
stats_reset(clock->offset_stats);
stats_reset(clock->freq_stats);
stats_reset(clock->delay_stats);
}
}
}
static struct clock *find_dst_clock(struct phc2sys_private *priv,
int phc_index)
{
struct clock *c = NULL;
LIST_FOREACH(c, &priv->dst_clocks, dst_list) {
if (c->phc_index == phc_index) {
break;
}
}
return c;
}
static void reconfigure(struct phc2sys_private *priv)
{
struct clock *c, *rt = NULL, *src = NULL, *last = NULL, *dup = NULL;
int src_cnt = 0, dst_cnt = 0;
pr_info("reconfiguring after port state change");
priv->state_changed = 0;
while (priv->dst_clocks.lh_first != NULL) {
LIST_REMOVE(priv->dst_clocks.lh_first, dst_list);
}
LIST_FOREACH(c, &priv->clocks, list) {
if (c->clkid == CLOCK_REALTIME) {
rt = c;
continue;
}
if (c->new_state) {
clock_reinit(priv, c, c->new_state);
c->state = c->new_state;
c->new_state = 0;
}
switch (c->state) {
case PS_FAULTY:
case PS_DISABLED:
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_PASSIVE:
dup = find_dst_clock(priv, c->phc_index);
if (!dup) {
pr_info("selecting %s for synchronization",
c->device);
dst_cnt++;
LIST_INSERT_HEAD(&priv->dst_clocks,
c, dst_list);
} else {
pr_info("skipping %s: %s has the same clock "
"and is already selected",
c->device, dup->device);
}
break;
case PS_UNCALIBRATED:
src_cnt++;
break;
case PS_SLAVE:
src = c;
src_cnt++;
break;
}
last = c;
}
if (dst_cnt > 1 && !src) {
if (!rt || rt->dest_only) {
priv->master = last;
/* Reset to original state in next reconfiguration. */
priv->master->new_state = priv->master->state;
priv->master->state = PS_SLAVE;
if (rt)
rt->state = PS_SLAVE;
pr_info("no source, selecting %s as the default clock",
last->device);
return;
}
}
if (src_cnt > 1) {
pr_info("multiple master clocks available, postponing sync...");
priv->master = NULL;
return;
}
if (src_cnt > 0 && !src) {
pr_info("master clock not ready, waiting...");
priv->master = NULL;
return;
}
if (!src_cnt && !dst_cnt) {
pr_info("no PHC ready, waiting...");
priv->master = NULL;
return;
}
if ((!src_cnt && (!rt || rt->dest_only)) ||
(!dst_cnt && !rt)) {
pr_info("nothing to synchronize");
priv->master = NULL;
return;
}
if (!src_cnt) {
src = rt;
rt->state = PS_SLAVE;
} else if (rt) {
if (rt->state != PS_MASTER) {
rt->state = PS_MASTER;
clock_reinit(priv, rt, rt->state);
}
LIST_INSERT_HEAD(&priv->dst_clocks, rt, dst_list);
pr_info("selecting %s for synchronization", rt->device);
}
priv->master = src;
pr_info("selecting %s as the master clock", src->device);
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
static int64_t get_sync_offset(struct phc2sys_private *priv, struct clock *dst)
{
int direction = priv->forced_sync_offset;
if (!direction)
direction = dst->is_utc - priv->master->is_utc;
return (int64_t)dst->sync_offset * NS_PER_SEC * direction;
}
static void update_clock_stats(struct clock *clock, unsigned int max_count,
int64_t offset, double freq, int64_t delay)
{
struct stats_result offset_stats, freq_stats, delay_stats;
stats_add_value(clock->offset_stats, offset);
stats_add_value(clock->freq_stats, freq);
if (delay >= 0)
stats_add_value(clock->delay_stats, delay);
if (stats_get_num_values(clock->offset_stats) < max_count)
return;
stats_get_result(clock->offset_stats, &offset_stats);
stats_get_result(clock->freq_stats, &freq_stats);
if (!stats_get_result(clock->delay_stats, &delay_stats)) {
pr_info("%s "
"rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f "
"delay %5.0f +/- %3.0f",
clock->device,
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev,
delay_stats.mean, delay_stats.stddev);
} else {
pr_info("%s "
"rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f",
clock->device,
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev);
}
stats_reset(clock->offset_stats);
stats_reset(clock->freq_stats);
stats_reset(clock->delay_stats);
}
static void update_clock(struct phc2sys_private *priv, struct clock *clock,
int64_t offset, uint64_t ts, int64_t delay)
{
enum servo_state state;
double ppb;
if (clock_handle_leap(priv, clock, offset, ts))
return;
offset += get_sync_offset(priv, clock);
if (clock->sanity_check && clockcheck_sample(clock->sanity_check, ts))
servo_reset(clock->servo);
ppb = servo_sample(clock->servo, offset, ts, 1.0, &state);
clock->servo_state = state;
switch (state) {
case SERVO_UNLOCKED:
break;
case SERVO_JUMP:
clockadj_step(clock->clkid, -offset);
if (clock->sanity_check)
clockcheck_step(clock->sanity_check, -offset);
/* Fall through. */
case SERVO_LOCKED:
case SERVO_LOCKED_STABLE:
clockadj_set_freq(clock->clkid, -ppb);
if (clock->clkid == CLOCK_REALTIME)
sysclk_set_sync();
if (clock->sanity_check)
clockcheck_set_freq(clock->sanity_check, -ppb);
break;
}
if (clock->offset_stats) {
update_clock_stats(clock, priv->stats_max_count, offset, ppb, delay);
} else {
if (delay >= 0) {
pr_info("%s %s offset %9" PRId64 " s%d freq %+7.0f "
"delay %6" PRId64,
clock->device, priv->master->source_label,
offset, state, ppb, delay);
} else {
pr_info("%s %s offset %9" PRId64 " s%d freq %+7.0f",
clock->device, priv->master->source_label,
offset, state, ppb);
}
}
}
static void enable_pps_output(clockid_t src)
{
int enable = 1;
if (!phc_has_pps(src))
return;
if (ioctl(CLOCKID_TO_FD(src), PTP_ENABLE_PPS, enable) < 0)
pr_warning("failed to enable PPS output");
}
static int read_pps(int fd, int64_t *offset, uint64_t *ts)
{
struct pps_fdata pfd;
pfd.timeout.sec = 10;
pfd.timeout.nsec = 0;
pfd.timeout.flags = ~PPS_TIME_INVALID;
if (ioctl(fd, PPS_FETCH, &pfd)) {
pr_err("failed to fetch PPS: %m");
return 0;
}
*ts = pfd.info.assert_tu.sec * NS_PER_SEC;
*ts += pfd.info.assert_tu.nsec;
*offset = *ts % NS_PER_SEC;
if (*offset > NS_PER_SEC / 2)
*offset -= NS_PER_SEC;
return 1;
}
static int do_pps_loop(struct phc2sys_private *priv, struct clock *clock,
int fd)
{
int64_t pps_offset, phc_offset, phc_delay;
uint64_t pps_ts, phc_ts;
clockid_t src = priv->master->clkid;
priv->master->source_label = "pps";
if (src == CLOCK_INVALID) {
/* The sync offset can't be applied with PPS alone. */
priv->node.sync_offset = 0;
} else {
enable_pps_output(priv->master->clkid);
}
while (is_running()) {
if (!read_pps(fd, &pps_offset, &pps_ts)) {
continue;
}
/* If a PHC is available, use it to get the whole number
of seconds in the offset and PPS for the rest. */
if (src != CLOCK_INVALID) {
if (!read_phc(src, clock->clkid, priv->phc_readings,
&phc_offset, &phc_ts, &phc_delay))
return -1;
/* Convert the time stamp to the PHC time. */
phc_ts -= phc_offset;
/* Check if it is close to the start of the second. */
if (phc_ts % NS_PER_SEC > PHC_PPS_OFFSET_LIMIT) {
pr_warning("PPS is not in sync with PHC"
" (0.%09lld)", phc_ts % NS_PER_SEC);
continue;
}
phc_ts = phc_ts / NS_PER_SEC * NS_PER_SEC;
pps_offset = pps_ts - phc_ts;
}
if (update_pmc_node(&priv->node, 0) < 0)
continue;
update_clock(priv, clock, pps_offset, pps_ts, -1);
}
close(fd);
return 0;
}
static int update_needed(struct clock *c)
{
switch (c->state) {
case PS_FAULTY:
case PS_DISABLED:
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_PASSIVE:
return 1;
case PS_UNCALIBRATED:
case PS_SLAVE:
break;
}
return 0;
}
static int do_loop(struct phc2sys_private *priv, int subscriptions)
{
struct timespec interval;
struct clock *clock;
uint64_t ts;
int64_t offset, delay;
interval.tv_sec = priv->phc_interval;
interval.tv_nsec = (priv->phc_interval - interval.tv_sec) * 1e9;
while (is_running()) {
clock_nanosleep(CLOCK_MONOTONIC, 0, &interval, NULL);
if (update_pmc_node(&priv->node, subscriptions) < 0)
continue;
if (subscriptions) {
run_pmc_events(&priv->node);
if (priv->state_changed) {
/* force getting offset, as it may have
* changed after the port state change */
if (run_pmc_get_utc_offset(&priv->node, 1000) <= 0) {
pr_err("failed to get UTC offset");
continue;
}
reconfigure(priv);
}
}
if (!priv->master)
continue;
LIST_FOREACH(clock, &priv->dst_clocks, dst_list) {
if (!update_needed(clock))
continue;
/* don't try to synchronize the clock to itself */
if (clock->clkid == priv->master->clkid ||
(clock->phc_index >= 0 &&
clock->phc_index == priv->master->phc_index) ||
!strcmp(clock->device, priv->master->device))
continue;
if (!clock->servo) {
pr_err("cannot update clock without servo");
return -1;
}
if (clock->clkid == CLOCK_REALTIME &&
priv->master->sysoff_method >= 0) {
/* use sysoff */
if (sysoff_measure(CLOCKID_TO_FD(priv->master->clkid),
priv->master->sysoff_method,
priv->phc_readings,
&offset, &ts, &delay) < 0)
return -1;
} else if (priv->master->clkid == CLOCK_REALTIME &&
clock->sysoff_method >= 0) {
/* use reversed sysoff */
if (sysoff_measure(CLOCKID_TO_FD(clock->clkid),
clock->sysoff_method,
priv->phc_readings,
&offset, &ts, &delay) < 0)
return -1;
offset = -offset;
ts += offset;
} else {
/* use phc */
if (!read_phc(priv->master->clkid, clock->clkid,
priv->phc_readings,
&offset, &ts, &delay))
continue;
}
update_clock(priv, clock, offset, ts, delay);
}
}
return 0;
}
static int normalize_state(int state)
{
if (state != PS_MASTER && state != PS_SLAVE &&
state != PS_PRE_MASTER && state != PS_UNCALIBRATED) {
/* treat any other state as "not a master nor a slave" */
state = PS_DISABLED;
}
return state;
}
static int clock_compute_state(struct phc2sys_private *priv,
struct clock *clock)
{
struct port *p;
int state = PS_DISABLED;
LIST_FOREACH(p, &priv->ports, list) {
if (p->clock != clock)
continue;
/* PS_SLAVE takes the highest precedence, PS_UNCALIBRATED
* after that, PS_MASTER is third, PS_PRE_MASTER fourth and
* all of that overrides PS_DISABLED, which corresponds
* nicely with the numerical values */
if (p->state > state)
state = p->state;
}
return state;
}
#define node_to_phc2sys(node) \
container_of(node, struct phc2sys_private, node)
static int phc2sys_recv_subscribed(struct pmc_node *node,
struct ptp_message *msg, int excluded)
{
struct phc2sys_private *priv = node_to_phc2sys(node);
int mgt_id, state;
struct portDS *pds;
struct port *port;
struct clock *clock;
mgt_id = get_mgt_id(msg);
if (mgt_id == excluded)
return 0;
switch (mgt_id) {
case TLV_PORT_DATA_SET:
pds = get_mgt_data(msg);
port = port_get(priv, pds->portIdentity.portNumber);
if (!port) {
pr_info("received data for unknown port %s",
pid2str(&pds->portIdentity));
return 1;
}
state = normalize_state(pds->portState);
if (port->state != state) {
pr_info("port %s changed state",
pid2str(&pds->portIdentity));
port->state = state;
clock = port->clock;
state = clock_compute_state(priv, clock);
if (clock->state != state || clock->new_state) {
clock->new_state = state;
priv->state_changed = 1;
}
}
return 1;
}
return 0;
}
static int auto_init_ports(struct phc2sys_private *priv, int add_rt)
{
struct port *port;
struct clock *clock;
int number_ports, res;
unsigned int i;
int state, timestamping;
char iface[IFNAMSIZ];
while (1) {
if (!is_running())
return -1;
res = run_pmc_clock_identity(&priv->node, 1000);
if (res < 0)
return -1;
if (res > 0)
break;
/* res == 0, timeout */
pr_notice("Waiting for ptp4l...");
}
number_ports = run_pmc_get_number_ports(&priv->node, 1000);
if (number_ports <= 0) {
pr_err("failed to get number of ports");
return -1;
}
res = run_pmc_subscribe(&priv->node, 1000);
if (res <= 0) {
pr_err("failed to subscribe");
return -1;
}
for (i = 1; i <= number_ports; i++) {
res = run_pmc_port_properties(&priv->node, 1000, i, &state,
&timestamping, iface);
if (res == -1) {
/* port does not exist, ignore the port */
continue;
}
if (res <= 0) {
pr_err("failed to get port properties");
return -1;
}
if (timestamping == TS_SOFTWARE) {
/* ignore ports with software time stamping */
continue;
}
port = port_add(priv, i, iface);
if (!port)
return -1;
port->state = normalize_state(state);
}
if (LIST_EMPTY(&priv->clocks)) {
pr_err("no suitable ports available");
return -1;
}
LIST_FOREACH(clock, &priv->clocks, list) {
clock->new_state = clock_compute_state(priv, clock);
}
priv->state_changed = 1;
if (add_rt) {
clock = clock_add(priv, "CLOCK_REALTIME");
if (!clock)
return -1;
if (add_rt == 1)
clock->dest_only = 1;
}
/* get initial offset */
if (run_pmc_get_utc_offset(&priv->node, 1000) <= 0) {
pr_err("failed to get UTC offset");
return -1;
}
return 0;
}
/* Returns: non-zero to skip clock update */
static int clock_handle_leap(struct phc2sys_private *priv, struct clock *clock,
int64_t offset, uint64_t ts)
{
int clock_leap, node_leap = priv->node.leap;
clock->sync_offset = priv->node.sync_offset;
if ((node_leap || clock->leap_set) &&
clock->is_utc != priv->master->is_utc) {
/* If the master clock is in UTC, get a time stamp from it, as
it is the clock which will include the leap second. */
if (priv->master->is_utc) {
struct timespec tp;
if (clock_gettime(priv->master->clkid, &tp)) {
pr_err("failed to read clock: %m");
return -1;
}
ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec;
}
/* If the clock will be stepped, the time stamp has to be the
new time. Ignore possible 1 second error in UTC offset. */
if (clock->is_utc && clock->servo_state == SERVO_UNLOCKED)
ts -= offset + get_sync_offset(priv, clock);
/* Suspend clock updates in the last second before midnight. */
if (is_utc_ambiguous(ts)) {
pr_info("clock update suspended due to leap second");
return 1;
}
clock_leap = leap_second_status(ts, clock->leap_set,
&node_leap,
&clock->sync_offset);
if (clock->leap_set != clock_leap) {
/* Only the system clock can leap. */
if (clock->clkid == CLOCK_REALTIME &&
priv->kernel_leap)
sysclk_set_leap(clock_leap);
else
servo_leap(clock->servo, clock_leap);
clock->leap_set = clock_leap;
}
}
if (priv->node.utc_offset_traceable &&
clock->utc_offset_set != clock->sync_offset) {
if (clock->clkid == CLOCK_REALTIME)
sysclk_set_tai_offset(clock->sync_offset);
clock->utc_offset_set = clock->sync_offset;
}
return 0;
}
static void usage(char *progname)
{
fprintf(stderr,
"\n"
"usage: %s [options]\n\n"
"\n"
" automatic configuration:\n"
" -a turn on autoconfiguration\n"
" -r synchronize system (realtime) clock\n"
" repeat -r to consider it also as a time source\n"
" manual configuration:\n"
" -c [dev|name] slave clock (CLOCK_REALTIME)\n"
" -d [dev] master PPS device\n"
" -s [dev|name] master clock\n"
" -O [offset] slave-master time offset (0)\n"
" -w wait for ptp4l\n"
" common options:\n"
" -f [file] configuration file\n"
" -E [pi|linreg] clock servo (pi)\n"
" -P [kp] proportional constant (0.7)\n"
" -I [ki] integration constant (0.3)\n"
" -S [step] step threshold (disabled)\n"
" -F [step] step threshold only on start (0.00002)\n"
" -R [rate] slave clock update rate in HZ (1.0)\n"
" -N [num] number of master clock readings per update (5)\n"
" -L [limit] sanity frequency limit in ppb (200000000)\n"
" -M [num] NTP SHM segment number (0)\n"
" -u [num] number of clock updates in summary stats (0)\n"
" -n [num] domain number (0)\n"
" -x apply leap seconds by servo instead of kernel\n"
" -z [path] server address for UDS (/var/run/ptp4l)\n"
" -l [num] set the logging level to 'num' (6)\n"
" -t [tag] add tag to log messages\n"
" -m print messages to stdout\n"
" -q do not print messages to the syslog\n"
" -v prints the software version and exits\n"
" -h prints this message and exits\n"
"\n",
progname);
}
int main(int argc, char *argv[])
{
char *config = NULL, *dst_name = NULL, *progname, *src_name = NULL;
char uds_local[MAX_IFNAME_SIZE + 1];
struct clock *src, *dst;
struct config *cfg;
struct option *opts;
int autocfg = 0, c, domain_number = 0, index, ntpshm_segment;
int pps_fd = -1, print_level = LOG_INFO, r = -1, rt = 0, wait_sync = 0;
double phc_rate, tmp;
struct phc2sys_private priv = {
.phc_readings = 5,
.phc_interval = 1.0,
};
handle_term_signals();
cfg = phc2sys_config = config_create();
if (!cfg) {
return -1;
}
opts = config_long_options(cfg);
config_set_double(cfg, "pi_proportional_const", KP);
config_set_double(cfg, "pi_integral_const", KI);
/* Process the command line arguments. */
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt_long(argc, argv,
"arc:d:f:s:E:P:I:S:F:R:N:O:L:M:i:u:wn:xz:l:t:mqvh",
opts, &index))) {
switch (c) {
case 0:
if (config_parse_option(cfg, opts[index].name, optarg)) {
goto bad_usage;
}
break;
case 'a':
autocfg = 1;
break;
case 'r':
rt++;
break;
case 'c':
dst_name = strdup(optarg);
break;
case 'd':
pps_fd = open(optarg, O_RDONLY);
if (pps_fd < 0) {
fprintf(stderr,
"cannot open '%s': %m\n", optarg);
goto end;
}
break;
case 'f':
config = optarg;
break;
case 'i':
fprintf(stderr,
"'-i' has been deprecated. please use '-s' instead.\n");
/* fallthrough */
case 's':
src_name = strdup(optarg);
break;
case 'E':
if (!strcasecmp(optarg, "pi")) {
config_set_int(cfg, "clock_servo",
CLOCK_SERVO_PI);
} else if (!strcasecmp(optarg, "linreg")) {
config_set_int(cfg, "clock_servo",
CLOCK_SERVO_LINREG);
} else if (!strcasecmp(optarg, "ntpshm")) {
config_set_int(cfg, "clock_servo",
CLOCK_SERVO_NTPSHM);
} else {
fprintf(stderr,
"invalid servo name %s\n", optarg);
goto end;
}
break;
case 'P':
if (get_arg_val_d(c, optarg, &tmp, 0.0, DBL_MAX) ||
config_set_double(cfg, "pi_proportional_const", tmp))
goto end;
break;
case 'I':
if (get_arg_val_d(c, optarg, &tmp, 0.0, DBL_MAX) ||
config_set_double(cfg, "pi_integral_const", tmp))
goto end;
break;
case 'S':
if (get_arg_val_d(c, optarg, &tmp, 0.0, DBL_MAX) ||
config_set_double(cfg, "step_threshold", tmp))
goto end;
break;
case 'F':
if (get_arg_val_d(c, optarg, &tmp, 0.0, DBL_MAX) ||
config_set_double(cfg, "first_step_threshold", tmp))
goto end;
break;
case 'R':
if (get_arg_val_d(c, optarg, &phc_rate, 1e-9, DBL_MAX))
goto end;
priv.phc_interval = 1.0 / phc_rate;
break;
case 'N':
if (get_arg_val_i(c, optarg, &priv.phc_readings, 1, INT_MAX))
goto end;
break;
case 'O':
if (get_arg_val_i(c, optarg, &priv.node.sync_offset,
INT_MIN, INT_MAX))
goto end;
priv.forced_sync_offset = -1;
break;
case 'L':
if (get_arg_val_i(c, optarg, &priv.sanity_freq_limit, 0, INT_MAX) ||
config_set_int(cfg, "sanity_freq_limit", priv.sanity_freq_limit)) {
goto end;
}
break;
case 'M':
if (get_arg_val_i(c, optarg, &ntpshm_segment, INT_MIN, INT_MAX) ||
config_set_int(cfg, "ntpshm_segment", ntpshm_segment))
goto end;
break;
case 'u':
if (get_arg_val_ui(c, optarg, &priv.stats_max_count,
0, UINT_MAX))
goto end;
break;
case 'w':
wait_sync = 1;
break;
case 'n':
if (get_arg_val_i(c, optarg, &domain_number, 0, 255) ||
config_set_int(cfg, "domainNumber", domain_number)) {
goto end;
}
break;
case 'x':
if (config_set_int(cfg, "kernel_leap", 0)) {
goto end;
}
break;
case 'z':
if (strlen(optarg) > MAX_IFNAME_SIZE) {
fprintf(stderr, "path %s too long, max is %d\n",
optarg, MAX_IFNAME_SIZE);
goto end;
}
if (config_set_string(cfg, "uds_address", optarg)) {
goto end;
}
break;
case 'l':
if (get_arg_val_i(c, optarg, &print_level,
PRINT_LEVEL_MIN, PRINT_LEVEL_MAX) ||
config_set_int(cfg, "logging_level", print_level)) {
goto end;
}
break;
case 't':
if (config_set_string(cfg, "message_tag", optarg)) {
goto end;
}
break;
case 'm':
if (config_set_int(cfg, "verbose", 1)) {
goto end;
}
break;
case 'q':
if (config_set_int(cfg, "use_syslog", 0)) {
goto end;
}
break;
case 'v':
version_show(stdout);
config_destroy(cfg);
return 0;
case 'h':
usage(progname);
config_destroy(cfg);
return 0;
default:
goto bad_usage;
}
}
if (config && (c = config_read(config, cfg))) {
return c;
}
if (autocfg && (src_name || dst_name || pps_fd >= 0 || wait_sync || priv.forced_sync_offset)) {
fprintf(stderr,
"autoconfiguration cannot be mixed with manual config options.\n");
goto bad_usage;
}
if (!autocfg && pps_fd < 0 && !src_name) {
fprintf(stderr,
"autoconfiguration or valid source clock must be selected.\n");
goto bad_usage;
}
if (!autocfg && !wait_sync && !priv.forced_sync_offset) {
fprintf(stderr,
"time offset must be specified using -w or -O\n");
goto bad_usage;
}
if (priv.servo_type == CLOCK_SERVO_NTPSHM) {
priv.kernel_leap = 0;
priv.sanity_freq_limit = 0;
}
print_set_progname(progname);
print_set_tag(config_get_string(cfg, NULL, "message_tag"));
print_set_verbose(config_get_int(cfg, NULL, "verbose"));
print_set_syslog(config_get_int(cfg, NULL, "use_syslog"));
print_set_level(config_get_int(cfg, NULL, "logging_level"));
priv.servo_type = config_get_int(cfg, NULL, "clock_servo");
if (priv.servo_type == CLOCK_SERVO_NTPSHM) {
config_set_int(cfg, "kernel_leap", 0);
config_set_int(cfg, "sanity_freq_limit", 0);
}
priv.kernel_leap = config_get_int(cfg, NULL, "kernel_leap");
priv.sanity_freq_limit = config_get_int(cfg, NULL, "sanity_freq_limit");
snprintf(uds_local, sizeof(uds_local), "/var/run/phc2sys.%d",
getpid());
if (autocfg) {
if (init_pmc_node(cfg, &priv.node, uds_local,
phc2sys_recv_subscribed))
goto end;
if (auto_init_ports(&priv, rt) < 0)
goto end;
r = do_loop(&priv, 1);
goto end;
}
src = clock_add(&priv, src_name);
free(src_name);
if (!src) {
fprintf(stderr,
"valid source clock must be selected.\n");
goto bad_usage;
}
src->state = PS_SLAVE;
priv.master = src;
dst = clock_add(&priv, dst_name ? dst_name : "CLOCK_REALTIME");
free(dst_name);
if (!dst) {
fprintf(stderr,
"valid destination clock must be selected.\n");
goto bad_usage;
}
dst->state = PS_MASTER;
LIST_INSERT_HEAD(&priv.dst_clocks, dst, dst_list);
if (pps_fd >= 0 && dst->clkid != CLOCK_REALTIME) {
fprintf(stderr,
"cannot use a pps device unless destination is CLOCK_REALTIME\n");
goto bad_usage;
}
r = -1;
if (wait_sync) {
if (init_pmc_node(cfg, &priv.node, uds_local,
phc2sys_recv_subscribed))
goto end;
while (is_running()) {
r = run_pmc_wait_sync(&priv.node, 1000);
if (r < 0)
goto end;
if (r > 0)
break;
else
pr_notice("Waiting for ptp4l...");
}
if (!priv.forced_sync_offset) {
r = run_pmc_get_utc_offset(&priv.node, 1000);
if (r <= 0) {
pr_err("failed to get UTC offset");
goto end;
}
}
if (priv.forced_sync_offset ||
(src->clkid != CLOCK_REALTIME && dst->clkid != CLOCK_REALTIME) ||
src->clkid == CLOCK_INVALID)
close_pmc_node(&priv.node);
}
if (pps_fd >= 0) {
/* only one destination clock allowed with PPS until we
* implement a mean to specify PTP port to PPS mapping */
servo_sync_interval(dst->servo, 1.0);
r = do_pps_loop(&priv, dst, pps_fd);
} else {
r = do_loop(&priv, 0);
}
end:
close_pmc_node(&priv.node);
clock_cleanup(&priv);
port_cleanup(&priv);
config_destroy(cfg);
msg_cleanup();
return r;
bad_usage:
usage(progname);
config_destroy(cfg);
return -1;
}