linuxptp/phc2sys.c

911 lines
22 KiB
C
Raw Normal View History

/**
* @file phc2sys.c
* @brief Utility program to synchronize two clocks via a PPS.
* @note Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <poll.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/pps.h>
#include <linux/ptp_clock.h>
#include "clockadj.h"
#include "clockcheck.h"
#include "ds.h"
#include "fsm.h"
#include "missing.h"
#include "phc.h"
#include "pi.h"
#include "pmc_common.h"
#include "print.h"
#include "servo.h"
#include "sk.h"
#include "stats.h"
#include "sysoff.h"
#include "tlv.h"
#include "util.h"
#include "version.h"
#define KP 0.7
#define KI 0.3
#define NS_PER_SEC 1000000000LL
#define PHC_PPS_OFFSET_LIMIT 10000000
#define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC)
struct clock;
static clockid_t clock_open(char *device)
{
struct sk_ts_info ts_info;
char phc_device[16];
int clkid;
/* check if device is CLOCK_REALTIME */
if (!strcasecmp(device, "CLOCK_REALTIME"))
return CLOCK_REALTIME;
/* check if device is valid phc device */
clkid = phc_open(device);
if (clkid != CLOCK_INVALID)
return clkid;
/* check if device is a valid ethernet device */
if (sk_get_ts_info(device, &ts_info) || !ts_info.valid) {
fprintf(stderr, "unknown clock %s: %m\n", device);
return CLOCK_INVALID;
}
if (ts_info.phc_index < 0) {
fprintf(stderr, "interface %s does not have a PHC\n", device);
return CLOCK_INVALID;
}
sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index);
clkid = phc_open(phc_device);
if (clkid == CLOCK_INVALID)
fprintf(stderr, "cannot open %s: %m\n", device);
return clkid;
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
struct clock {
LIST_ENTRY(clock) list;
clockid_t clkid;
int sysoff_supported;
int is_utc;
struct servo *servo;
enum servo_state servo_state;
const char *source_label;
struct stats *offset_stats;
struct stats *freq_stats;
struct stats *delay_stats;
struct clockcheck *sanity_check;
};
struct node {
unsigned int stats_max_count;
int sanity_freq_limit;
enum servo_type servo_type;
int phc_readings;
double phc_interval;
int sync_offset;
int forced_sync_offset;
int leap;
int leap_set;
int kernel_leap;
struct pmc *pmc;
int pmc_ds_requested;
uint64_t pmc_last_update;
LIST_HEAD(clock_head, clock) clocks;
struct clock *master;
};
static int update_sync_offset(struct node *node);
static int clock_handle_leap(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int do_leap);
static int64_t get_sync_offset(struct node *node, struct clock *dst)
{
int direction = node->forced_sync_offset;
if (!direction)
direction = dst->is_utc - node->master->is_utc;
return (int64_t)node->sync_offset * NS_PER_SEC * direction;
}
static void update_clock_stats(struct clock *clock, unsigned int max_count,
int64_t offset, double freq, int64_t delay)
{
struct stats_result offset_stats, freq_stats, delay_stats;
stats_add_value(clock->offset_stats, offset);
stats_add_value(clock->freq_stats, freq);
if (delay >= 0)
stats_add_value(clock->delay_stats, delay);
if (stats_get_num_values(clock->offset_stats) < max_count)
return;
stats_get_result(clock->offset_stats, &offset_stats);
stats_get_result(clock->freq_stats, &freq_stats);
if (!stats_get_result(clock->delay_stats, &delay_stats)) {
pr_info("rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f "
"delay %5.0f +/- %3.0f",
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev,
delay_stats.mean, delay_stats.stddev);
} else {
pr_info("rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f",
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev);
}
stats_reset(clock->offset_stats);
stats_reset(clock->freq_stats);
stats_reset(clock->delay_stats);
}
static void update_clock(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int64_t delay,
int do_leap)
{
enum servo_state state;
double ppb;
if (clock_handle_leap(node, clock, offset, ts, do_leap))
return;
offset += get_sync_offset(node, clock);
if (clock->sanity_check && clockcheck_sample(clock->sanity_check, ts))
servo_reset(clock->servo);
ppb = servo_sample(clock->servo, offset, ts, &state);
clock->servo_state = state;
switch (state) {
case SERVO_UNLOCKED:
break;
case SERVO_JUMP:
clockadj_step(clock->clkid, -offset);
if (clock->sanity_check)
clockcheck_step(clock->sanity_check, -offset);
/* Fall through. */
case SERVO_LOCKED:
clockadj_set_freq(clock->clkid, -ppb);
if (clock->clkid == CLOCK_REALTIME)
sysclk_set_sync();
if (clock->sanity_check)
clockcheck_set_freq(clock->sanity_check, -ppb);
break;
}
if (clock->offset_stats) {
update_clock_stats(clock, node->stats_max_count, offset, ppb, delay);
} else {
if (delay >= 0) {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f "
"delay %6" PRId64,
node->master->source_label, offset, state, ppb, delay);
} else {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f",
node->master->source_label, offset, state, ppb);
}
}
}
static void enable_pps_output(clockid_t src)
{
int enable = 1;
if (!phc_has_pps(src))
return;
if (ioctl(CLOCKID_TO_FD(src), PTP_ENABLE_PPS, enable) < 0)
pr_warning("failed to enable PPS output");
}
static int read_pps(int fd, int64_t *offset, uint64_t *ts)
{
struct pps_fdata pfd;
pfd.timeout.sec = 10;
pfd.timeout.nsec = 0;
pfd.timeout.flags = ~PPS_TIME_INVALID;
if (ioctl(fd, PPS_FETCH, &pfd)) {
pr_err("failed to fetch PPS: %m");
return 0;
}
*ts = pfd.info.assert_tu.sec * NS_PER_SEC;
*ts += pfd.info.assert_tu.nsec;
*offset = *ts % NS_PER_SEC;
if (*offset > NS_PER_SEC / 2)
*offset -= NS_PER_SEC;
return 1;
}
static int do_pps_loop(struct node *node, struct clock *clock, int fd)
{
int64_t pps_offset, phc_offset, phc_delay;
uint64_t pps_ts, phc_ts;
clockid_t src = node->master->clkid;
int do_leap;
node->master->source_label = "pps";
if (src == CLOCK_INVALID) {
/* The sync offset can't be applied with PPS alone. */
node->sync_offset = 0;
} else {
enable_pps_output(node->master->clkid);
}
while (1) {
if (!read_pps(fd, &pps_offset, &pps_ts)) {
continue;
}
/* If a PHC is available, use it to get the whole number
of seconds in the offset and PPS for the rest. */
if (src != CLOCK_INVALID) {
if (!read_phc(src, clock->clkid, node->phc_readings,
&phc_offset, &phc_ts, &phc_delay))
return -1;
/* Convert the time stamp to the PHC time. */
phc_ts -= phc_offset;
/* Check if it is close to the start of the second. */
if (phc_ts % NS_PER_SEC > PHC_PPS_OFFSET_LIMIT) {
pr_warning("PPS is not in sync with PHC"
" (0.%09lld)", phc_ts % NS_PER_SEC);
continue;
}
phc_ts = phc_ts / NS_PER_SEC * NS_PER_SEC;
pps_offset = pps_ts - phc_ts;
}
do_leap = update_sync_offset(node);
if (do_leap < 0)
continue;
update_clock(node, clock, pps_offset, pps_ts, -1, do_leap);
}
close(fd);
return 0;
}
static int do_loop(struct node *node)
{
struct timespec interval;
struct clock *clock;
uint64_t ts;
int64_t offset, delay;
int src_fd = CLOCKID_TO_FD(node->master->clkid);
int do_leap;
interval.tv_sec = node->phc_interval;
interval.tv_nsec = (node->phc_interval - interval.tv_sec) * 1e9;
while (1) {
clock_nanosleep(CLOCK_MONOTONIC, 0, &interval, NULL);
do_leap = update_sync_offset(node);
if (do_leap < 0)
continue;
LIST_FOREACH(clock, &node->clocks, list) {
if (clock == node->master)
continue;
if (clock->clkid == CLOCK_REALTIME &&
node->master->sysoff_supported) {
/* use sysoff */
if (sysoff_measure(src_fd, node->phc_readings,
&offset, &ts, &delay))
return -1;
} else {
/* use phc */
if (!read_phc(node->master->clkid, clock->clkid,
node->phc_readings,
&offset, &ts, &delay))
continue;
}
update_clock(node, clock, offset, ts, delay, do_leap);
}
}
return 0; /* unreachable */
}
static int is_msg_mgt(struct ptp_message *msg)
{
struct TLV *tlv;
if (msg_type(msg) != MANAGEMENT)
return 0;
if (management_action(msg) != RESPONSE)
return 0;
if (msg->tlv_count != 1)
return 0;
tlv = (struct TLV *) msg->management.suffix;
if (tlv->type != TLV_MANAGEMENT)
return 0;
return 1;
}
static int get_mgt_id(struct ptp_message *msg)
{
struct management_tlv *mgt = (struct management_tlv *) msg->management.suffix;
return mgt->id;
}
static void *get_mgt_data(struct ptp_message *msg)
{
struct management_tlv *mgt = (struct management_tlv *) msg->management.suffix;
return mgt->data;
}
static int init_pmc(struct node *node, int domain_number)
{
node->pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0,
domain_number, 0, 1);
if (!node->pmc) {
pr_err("failed to create pmc");
return -1;
}
return 0;
}
static int run_pmc(struct node *node, int timeout, int ds_id,
struct ptp_message **msg)
{
#define N_FD 1
struct pollfd pollfd[N_FD];
int cnt;
while (1) {
pollfd[0].fd = pmc_get_transport_fd(node->pmc);
pollfd[0].events = POLLIN|POLLPRI;
if (!node->pmc_ds_requested)
pollfd[0].events |= POLLOUT;
cnt = poll(pollfd, N_FD, timeout);
if (cnt < 0) {
pr_err("poll failed");
return -1;
}
if (!cnt) {
/* Request the data set again in the next run. */
node->pmc_ds_requested = 0;
return 0;
}
/* Send a new request if there are no pending messages. */
if ((pollfd[0].revents & POLLOUT) &&
!(pollfd[0].revents & (POLLIN|POLLPRI))) {
pmc_send_get_action(node->pmc, ds_id);
node->pmc_ds_requested = 1;
}
if (!(pollfd[0].revents & (POLLIN|POLLPRI)))
continue;
*msg = pmc_recv(node->pmc);
if (!*msg)
continue;
if (!is_msg_mgt(*msg) ||
get_mgt_id(*msg) != ds_id) {
msg_put(*msg);
*msg = NULL;
continue;
}
node->pmc_ds_requested = 0;
return 1;
}
}
static int run_pmc_wait_sync(struct node *node, int timeout)
{
struct ptp_message *msg;
int res;
void *data;
Enumeration8 portState;
while (1) {
res = run_pmc(node, timeout, PORT_DATA_SET, &msg);
if (res <= 0)
return res;
data = get_mgt_data(msg);
portState = ((struct portDS *)data)->portState;
msg_put(msg);
switch (portState) {
case PS_MASTER:
case PS_SLAVE:
return 1;
}
/* try to get more data sets (for other ports) */
node->pmc_ds_requested = 1;
}
}
static int run_pmc_get_utc_offset(struct node *node, int timeout)
{
struct ptp_message *msg;
int res;
struct timePropertiesDS *tds;
res = run_pmc(node, timeout, TIME_PROPERTIES_DATA_SET, &msg);
if (res <= 0)
return res;
tds = (struct timePropertiesDS *)get_mgt_data(msg);
if (tds->flags & PTP_TIMESCALE) {
node->sync_offset = tds->currentUtcOffset;
if (tds->flags & LEAP_61)
node->leap = 1;
else if (tds->flags & LEAP_59)
node->leap = -1;
else
node->leap = 0;
}
msg_put(msg);
return 1;
}
static void close_pmc(struct node *node)
{
pmc_destroy(node->pmc);
node->pmc = NULL;
}
/* Returns: -1 in case of error, 0 for normal sync, 1 to leap clock */
static int update_sync_offset(struct node *node)
{
struct timespec tp;
uint64_t ts;
int clock_leap;
if (clock_gettime(CLOCK_REALTIME, &tp)) {
pr_err("failed to read clock: %m");
return -1;
}
ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec;
if (node->pmc &&
!(ts > node->pmc_last_update &&
ts - node->pmc_last_update < PMC_UPDATE_INTERVAL)) {
if (run_pmc_get_utc_offset(node, 0) > 0)
node->pmc_last_update = ts;
}
/* Handle leap seconds. */
if (!node->leap && !node->leap_set)
return 0;
clock_leap = leap_second_status(ts, node->leap_set,
&node->leap, &node->sync_offset);
if (node->leap_set != clock_leap) {
node->leap_set = clock_leap;
return 1;
}
return 0;
}
/* Returns: non-zero to skip clock update */
static int clock_handle_leap(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int do_leap)
{
if (!node->leap && !do_leap)
return 0;
if (clock->is_utc == node->master->is_utc)
return 0;
/* If the system clock is the master clock, get a time stamp from
it, as it is the clock which will include the leap second. */
if (node->master->is_utc) {
struct timespec tp;
if (clock_gettime(node->master->clkid, &tp)) {
pr_err("failed to read clock: %m");
return -1;
}
ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec;
}
/* If the clock will be stepped, the time stamp has to be the
target time. Ignore possible 1 second error in UTC offset. */
if (clock->is_utc && clock->servo_state == SERVO_UNLOCKED)
ts -= offset + get_sync_offset(node, clock);
/* Suspend clock updates in the last second before midnight. */
if (is_utc_ambiguous(ts)) {
pr_info("clock update suspended due to leap second");
return 1;
}
if (do_leap) {
/* Only the system clock can leap. */
if (clock->clkid == CLOCK_REALTIME && node->kernel_leap)
sysclk_set_leap(node->leap_set);
}
return 0;
}
static int clock_add(struct node *node, clockid_t clkid)
{
struct clock *c;
int max_ppb;
double ppb;
c = calloc(1, sizeof(*c));
if (!c) {
pr_err("failed to allocate memory for a clock");
return -1;
}
c->clkid = clkid;
c->servo_state = SERVO_UNLOCKED;
if (c->clkid == CLOCK_REALTIME) {
c->source_label = "sys";
c->is_utc = 1;
} else {
c->source_label = "phc";
}
if (node->stats_max_count > 0) {
c->offset_stats = stats_create();
c->freq_stats = stats_create();
c->delay_stats = stats_create();
if (!c->offset_stats ||
!c->freq_stats ||
!c->delay_stats) {
pr_err("failed to create stats");
return -1;
}
}
if (node->sanity_freq_limit) {
c->sanity_check = clockcheck_create(node->sanity_freq_limit);
if (!c->sanity_check) {
pr_err("failed to create clock check");
return -1;
}
}
clockadj_init(c->clkid);
ppb = clockadj_get_freq(c->clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(c->clkid, ppb);
if (c->clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(c->clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
c->servo = servo_create(node->servo_type, -ppb, max_ppb, 0);
servo_sync_interval(c->servo, node->phc_interval);
if (clkid != CLOCK_REALTIME)
c->sysoff_supported = (SYSOFF_SUPPORTED ==
sysoff_probe(CLOCKID_TO_FD(clkid),
node->phc_readings));
LIST_INSERT_HEAD(&node->clocks, c, list);
return 0;
}
static void usage(char *progname)
{
fprintf(stderr,
"\n"
"usage: %s [options]\n\n"
" -c [dev|name] slave clock (CLOCK_REALTIME)\n"
" -d [dev] master PPS device\n"
" -s [dev|name] master clock\n"
" -E [pi|linreg] clock servo (pi)\n"
" -P [kp] proportional constant (0.7)\n"
" -I [ki] integration constant (0.3)\n"
" -S [step] step threshold (disabled)\n"
" -F [step] step threshold only on start (0.00002)\n"
" -R [rate] slave clock update rate in HZ (1.0)\n"
" -N [num] number of master clock readings per update (5)\n"
" -O [offset] slave-master time offset (0)\n"
" -L [limit] sanity frequency limit in ppb (200000000)\n"
" -u [num] number of clock updates in summary stats (0)\n"
" -w wait for ptp4l\n"
" -n [num] domain number (0)\n"
" -x apply leap seconds by servo instead of kernel\n"
" -l [num] set the logging level to 'num' (6)\n"
" -m print messages to stdout\n"
" -q do not print messages to the syslog\n"
" -v prints the software version and exits\n"
" -h prints this message and exits\n"
"\n",
progname);
}
int main(int argc, char *argv[])
{
char *progname;
clockid_t src = CLOCK_INVALID;
clockid_t dst = CLOCK_REALTIME;
int c, domain_number = 0, pps_fd = -1;
int r, wait_sync = 0;
int print_level = LOG_INFO, use_syslog = 1, verbose = 0;
double phc_rate;
struct node node = {
.sanity_freq_limit = 200000000,
.servo_type = CLOCK_SERVO_PI,
.phc_readings = 5,
.phc_interval = 1.0,
.kernel_leap = 1,
};
configured_pi_kp = KP;
configured_pi_ki = KI;
/* Process the command line arguments. */
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv,
"c:d:s:E:P:I:S:F:R:N:O:L:i:u:wn:xl:mqvh"))) {
switch (c) {
case 'c':
dst = clock_open(optarg);
break;
case 'd':
pps_fd = open(optarg, O_RDONLY);
if (pps_fd < 0) {
fprintf(stderr,
"cannot open '%s': %m\n", optarg);
return -1;
}
break;
case 'i':
fprintf(stderr,
"'-i' has been deprecated. please use '-s' instead.\n");
case 's':
src = clock_open(optarg);
break;
case 'E':
if (!strcasecmp(optarg, "pi")) {
node.servo_type = CLOCK_SERVO_PI;
} else if (!strcasecmp(optarg, "linreg")) {
node.servo_type = CLOCK_SERVO_LINREG;
} else {
fprintf(stderr,
"invalid servo name %s\n", optarg);
return -1;
}
break;
case 'P':
if (get_arg_val_d(c, optarg, &configured_pi_kp,
0.0, DBL_MAX))
return -1;
break;
case 'I':
if (get_arg_val_d(c, optarg, &configured_pi_ki,
0.0, DBL_MAX))
return -1;
break;
case 'S':
if (get_arg_val_d(c, optarg, &servo_step_threshold,
0.0, DBL_MAX))
return -1;
break;
case 'F':
if (get_arg_val_d(c, optarg, &servo_first_step_threshold,
0.0, DBL_MAX))
return -1;
break;
case 'R':
if (get_arg_val_d(c, optarg, &phc_rate, 1e-9, DBL_MAX))
return -1;
node.phc_interval = 1.0 / phc_rate;
break;
case 'N':
if (get_arg_val_i(c, optarg, &node.phc_readings, 1, INT_MAX))
return -1;
break;
case 'O':
if (get_arg_val_i(c, optarg, &node.sync_offset,
INT_MIN, INT_MAX))
return -1;
node.forced_sync_offset = -1;
break;
case 'L':
if (get_arg_val_i(c, optarg, &node.sanity_freq_limit, 0, INT_MAX))
return -1;
break;
case 'u':
if (get_arg_val_ui(c, optarg, &node.stats_max_count,
0, UINT_MAX))
return -1;
break;
case 'w':
wait_sync = 1;
break;
case 'n':
if (get_arg_val_i(c, optarg, &domain_number, 0, 255))
return -1;
break;
case 'x':
node.kernel_leap = 0;
break;
case 'l':
if (get_arg_val_i(c, optarg, &print_level,
PRINT_LEVEL_MIN, PRINT_LEVEL_MAX))
return -1;
break;
case 'm':
verbose = 1;
break;
case 'q':
use_syslog = 0;
break;
case 'v':
version_show(stdout);
return 0;
case 'h':
usage(progname);
return 0;
default:
goto bad_usage;
}
}
if (pps_fd < 0 && src == CLOCK_INVALID) {
fprintf(stderr,
"valid source clock must be selected.\n");
goto bad_usage;
}
if (dst == CLOCK_INVALID) {
fprintf(stderr,
"valid destination clock must be selected.\n");
goto bad_usage;
}
if (pps_fd >= 0 && dst != CLOCK_REALTIME) {
fprintf(stderr,
"cannot use a pps device unless destination is CLOCK_REALTIME\n");
goto bad_usage;
}
if (!wait_sync && !node.forced_sync_offset) {
fprintf(stderr,
"time offset must be specified using -w or -O\n");
goto bad_usage;
}
print_set_progname(progname);
print_set_verbose(verbose);
print_set_syslog(use_syslog);
print_set_level(print_level);
clock_add(&node, src);
node.master = LIST_FIRST(&node.clocks);
clock_add(&node, dst);
if (wait_sync) {
if (init_pmc(&node, domain_number))
return -1;
while (1) {
r = run_pmc_wait_sync(&node, 1000);
if (r < 0)
return -1;
if (r > 0)
break;
else
pr_notice("Waiting for ptp4l...");
}
if (!node.forced_sync_offset) {
r = run_pmc_get_utc_offset(&node, 1000);
if (r <= 0) {
pr_err("failed to get UTC offset");
return -1;
}
}
if (node.forced_sync_offset ||
(src != CLOCK_REALTIME && dst != CLOCK_REALTIME) ||
src == CLOCK_INVALID)
close_pmc(&node);
}
if (pps_fd >= 0) {
/* only one destination clock allowed with PPS until we
* implement a mean to specify PTP port to PPS mapping */
struct clock *dst_clock;
LIST_FOREACH(dst_clock, &node.clocks, list) {
if (dst_clock != node.master)
break;
}
servo_sync_interval(dst_clock->servo, 1.0);
return do_pps_loop(&node, dst_clock, pps_fd);
}
return do_loop(&node);
bad_usage:
usage(progname);
return -1;
}