linuxptp/tmv.h

172 lines
3.7 KiB
C
Raw Normal View History

/**
* @file tmv.h
* @brief Implements an abstract time value type.
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef HAVE_TMV_H
#define HAVE_TMV_H
#include <linux/ptp_clock.h>
#include <time.h>
#include "ddt.h"
#include "pdt.h"
#define NS_PER_SEC 1000000000LL
#define MIN_TMV_TO_TIMEINTERVAL 0xFFFF800000000000ll
#define MAX_TMV_TO_TIMEINTERVAL 0x00007FFFFFFFFFFFll
/**
* We implement the time value as a 64 bit signed integer containing
* nanoseconds. Using this representation, we could really spare the
* arithmetic functions such as @ref tmv_add() and the like, and just
* use plain old math operators in the code.
*
* However, we are going to be a bit pedantic here and enforce the
* use of the these functions, so that we can easily upgrade the code
* to a finer representation later on. In that way, we can make use of
* the fractional nanosecond parts of the correction fields, if and
* when people start asking for them.
*/
typedef struct {
int64_t ns;
} tmv_t;
static inline tmv_t tmv_add(tmv_t a, tmv_t b)
{
tmv_t t;
t.ns = a.ns + b.ns;
return t;
}
static inline tmv_t tmv_div(tmv_t a, int divisor)
{
tmv_t t;
t.ns = a.ns / divisor;
return t;
}
static inline int tmv_cmp(tmv_t a, tmv_t b)
{
return a.ns == b.ns ? 0 : a.ns > b.ns ? +1 : -1;
}
static inline int tmv_sign(tmv_t x)
{
return x.ns == 0 ? 0 : x.ns > 0 ? +1 : -1;
}
static inline int tmv_is_zero(tmv_t x)
{
return x.ns == 0 ? 1 : 0;
}
static inline tmv_t tmv_sub(tmv_t a, tmv_t b)
{
tmv_t t;
t.ns = a.ns - b.ns;
return t;
}
static inline tmv_t tmv_zero(void)
{
tmv_t t = { 0 };
return t;
}
static inline tmv_t correction_to_tmv(Integer64 c)
{
tmv_t t;
t.ns = (c >> 16);
return t;
}
static inline double tmv_dbl(tmv_t x)
{
return (double) x.ns;
}
static inline tmv_t dbl_tmv(double x)
{
tmv_t t;
t.ns = x;
return t;
}
static inline int64_t tmv_to_nanoseconds(tmv_t x)
{
return x.ns;
}
static inline TimeInterval tmv_to_TimeInterval(tmv_t x)
{
if (x.ns < (int64_t)MIN_TMV_TO_TIMEINTERVAL) {
return MIN_TMV_TO_TIMEINTERVAL << 16;
} else if (x.ns > (int64_t)MAX_TMV_TO_TIMEINTERVAL) {
return MAX_TMV_TO_TIMEINTERVAL << 16;
}
return x.ns << 16;
}
static inline struct Timestamp tmv_to_Timestamp(tmv_t x)
{
struct Timestamp result;
uint64_t sec, nsec;
sec = x.ns / 1000000000ULL;
nsec = x.ns % 1000000000ULL;
result.seconds_lsb = sec & 0xFFFFFFFF;
result.seconds_msb = (sec >> 32) & 0xFFFF;
result.nanoseconds = nsec;
return result;
}
static inline tmv_t timespec_to_tmv(struct timespec ts)
{
tmv_t t;
t.ns = ts.tv_sec * NS_PER_SEC + ts.tv_nsec;
return t;
}
static inline struct timespec tmv_to_timespec(tmv_t t)
{
struct timespec ts;
ts.tv_sec = t.ns / NS_PER_SEC;
ts.tv_nsec = t.ns % NS_PER_SEC;
return ts;
}
static inline tmv_t timestamp_to_tmv(struct timestamp ts)
{
tmv_t t;
t.ns = ts.sec * NS_PER_SEC + ts.nsec;
return t;
}
static inline tmv_t pct_to_tmv(struct ptp_clock_time pct)
{
tmv_t t;
t.ns = pct.sec * NS_PER_SEC + pct.nsec;
return t;
}
#endif