linuxptp/port.c

2542 lines
62 KiB
C

/**
* @file port.c
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <arpa/inet.h>
#include <errno.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/queue.h>
#include "bmc.h"
#include "clock.h"
#include "filter.h"
#include "missing.h"
#include "msg.h"
#include "port.h"
#include "print.h"
#include "sk.h"
#include "tlv.h"
#include "tmv.h"
#include "util.h"
#define ALLOWED_LOST_RESPONSES 3
enum syfu_state {
SF_EMPTY,
SF_HAVE_SYNC,
SF_HAVE_FUP,
};
enum syfu_event {
SYNC_MISMATCH,
SYNC_MATCH,
FUP_MISMATCH,
FUP_MATCH,
};
struct nrate_estimator {
double ratio;
tmv_t origin1;
tmv_t ingress1;
unsigned int max_count;
unsigned int count;
int ratio_valid;
};
struct port {
LIST_ENTRY(port) list;
char *name;
struct clock *clock;
struct transport *trp;
enum timestamp_type timestamping;
struct fdarray fda;
int fault_fd;
struct foreign_clock *best;
enum syfu_state syfu;
struct ptp_message *last_syncfup;
struct ptp_message *delay_req;
struct ptp_message *peer_delay_req;
struct ptp_message *peer_delay_resp;
struct ptp_message *peer_delay_fup;
int peer_portid_valid;
struct PortIdentity peer_portid;
struct {
UInteger16 announce;
UInteger16 delayreq;
UInteger16 sync;
} seqnum;
tmv_t peer_delay;
struct filter *delay_filter;
int log_sync_interval;
struct nrate_estimator nrate;
unsigned int pdr_missing;
unsigned int multiple_seq_pdr_count;
unsigned int multiple_pdr_detected;
/* portDS */
struct port_defaults pod;
struct PortIdentity portIdentity;
enum port_state state; /*portState*/
int asCapable;
Integer8 logMinDelayReqInterval;
TimeInterval peerMeanPathDelay;
Integer8 logAnnounceInterval;
UInteger8 announceReceiptTimeout;
UInteger8 syncReceiptTimeout;
UInteger8 transportSpecific;
Integer8 logSyncInterval;
Enumeration8 delayMechanism;
Integer8 logMinPdelayReqInterval;
UInteger32 neighborPropDelayThresh;
int min_neighbor_prop_delay;
enum fault_type last_fault_type;
unsigned int versionNumber; /*UInteger4*/
/* foreignMasterDS */
LIST_HEAD(fm, foreign_clock) foreign_masters;
};
#define portnum(p) (p->portIdentity.portNumber)
#define NSEC2SEC 1000000000LL
static int port_capable(struct port *p);
static int port_is_ieee8021as(struct port *p);
static void port_nrate_initialize(struct port *p);
static int announce_compare(struct ptp_message *m1, struct ptp_message *m2)
{
struct announce_msg *a = &m1->announce, *b = &m2->announce;
int len =
sizeof(a->grandmasterPriority1) +
sizeof(a->grandmasterClockQuality) +
sizeof(a->grandmasterPriority2) +
sizeof(a->grandmasterIdentity) +
sizeof(a->stepsRemoved);
return memcmp(&a->grandmasterPriority1, &b->grandmasterPriority1, len);
}
static void announce_to_dataset(struct ptp_message *m, struct clock *c,
struct dataset *out)
{
struct announce_msg *a = &m->announce;
out->priority1 = a->grandmasterPriority1;
out->identity = a->grandmasterIdentity;
out->quality = a->grandmasterClockQuality;
out->priority2 = a->grandmasterPriority2;
out->stepsRemoved = a->stepsRemoved;
out->sender = m->header.sourcePortIdentity;
out->receiver = clock_parent_identity(c);
}
static int msg_current(struct ptp_message *m, struct timespec now)
{
int64_t t1, t2, tmo;
t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec;
t2 = now.tv_sec * NSEC2SEC + now.tv_nsec;
if (m->header.logMessageInterval < 0)
tmo = 4LL * NSEC2SEC / (1 << -m->header.logMessageInterval);
else
tmo = 4LL * (1 << m->header.logMessageInterval) * NSEC2SEC;
return t2 - t1 < tmo;
}
static int msg_source_equal(struct ptp_message *m1, struct foreign_clock *fc)
{
struct PortIdentity *id1, *id2;
id1 = &m1->header.sourcePortIdentity;
id2 = &fc->dataset.sender;
return 0 == memcmp(id1, id2, sizeof(*id1));
}
static int pid_eq(struct PortIdentity *a, struct PortIdentity *b)
{
return 0 == memcmp(a, b, sizeof(*a));
}
static int source_pid_eq(struct ptp_message *m1, struct ptp_message *m2)
{
return pid_eq(&m1->header.sourcePortIdentity,
&m2->header.sourcePortIdentity);
}
enum fault_type last_fault_type(struct port *port)
{
return port->last_fault_type;
}
int fault_interval(struct port *port, enum fault_type ft,
struct fault_interval *i)
{
if (!port || !i)
return -EINVAL;
if (ft < 0 || ft >= FT_CNT)
return -EINVAL;
i->type = port->pod.flt_interval_pertype[ft].type;
i->val = port->pod.flt_interval_pertype[ft].val;
return 0;
}
int port_fault_fd(struct port *port)
{
return port->fault_fd;
}
struct fdarray *port_fda(struct port *port)
{
return &port->fda;
}
int set_tmo_log(int fd, unsigned int scale, int log_seconds)
{
struct itimerspec tmo = {
{0, 0}, {0, 0}
};
uint64_t ns;
int i;
if (log_seconds < 0) {
log_seconds *= -1;
for (i = 1, ns = scale * 500000000ULL; i < log_seconds; i++) {
ns >>= 1;
}
tmo.it_value.tv_nsec = ns;
while (tmo.it_value.tv_nsec >= NS_PER_SEC) {
tmo.it_value.tv_nsec -= NS_PER_SEC;
tmo.it_value.tv_sec++;
}
} else
tmo.it_value.tv_sec = scale * (1 << log_seconds);
return timerfd_settime(fd, 0, &tmo, NULL);
}
int set_tmo_lin(int fd, int seconds)
{
struct itimerspec tmo = {
{0, 0}, {0, 0}
};
tmo.it_value.tv_sec = seconds;
return timerfd_settime(fd, 0, &tmo, NULL);
}
int set_tmo_random(int fd, int min, int span, int log_seconds)
{
uint64_t value_ns, min_ns, span_ns;
struct itimerspec tmo = {
{0, 0}, {0, 0}
};
if (log_seconds >= 0) {
min_ns = min * NS_PER_SEC << log_seconds;
span_ns = span * NS_PER_SEC << log_seconds;
} else {
min_ns = min * NS_PER_SEC >> -log_seconds;
span_ns = span * NS_PER_SEC >> -log_seconds;
}
value_ns = min_ns + (span_ns * (random() % (1 << 15) + 1) >> 15);
tmo.it_value.tv_sec = value_ns / NS_PER_SEC;
tmo.it_value.tv_nsec = value_ns % NS_PER_SEC;
return timerfd_settime(fd, 0, &tmo, NULL);
}
int port_set_fault_timer_log(struct port *port,
unsigned int scale, int log_seconds)
{
return set_tmo_log(port->fault_fd, scale, log_seconds);
}
int port_set_fault_timer_lin(struct port *port, int seconds)
{
return set_tmo_lin(port->fault_fd, seconds);
}
static void fc_clear(struct foreign_clock *fc)
{
struct ptp_message *m;
while (fc->n_messages) {
m = TAILQ_LAST(&fc->messages, messages);
TAILQ_REMOVE(&fc->messages, m, list);
fc->n_messages--;
msg_put(m);
}
}
static void fc_prune(struct foreign_clock *fc)
{
struct timespec now;
struct ptp_message *m;
clock_gettime(CLOCK_MONOTONIC, &now);
while (fc->n_messages > FOREIGN_MASTER_THRESHOLD) {
m = TAILQ_LAST(&fc->messages, messages);
TAILQ_REMOVE(&fc->messages, m, list);
fc->n_messages--;
msg_put(m);
}
while (!TAILQ_EMPTY(&fc->messages)) {
m = TAILQ_LAST(&fc->messages, messages);
if (msg_current(m, now))
break;
TAILQ_REMOVE(&fc->messages, m, list);
fc->n_messages--;
msg_put(m);
}
}
static void ts_add(struct timespec *ts, int ns)
{
if (!ns) {
return;
}
ts->tv_nsec += ns;
while (ts->tv_nsec < 0) {
ts->tv_nsec += (long) NS_PER_SEC;
ts->tv_sec--;
}
while (ts->tv_nsec >= (long) NS_PER_SEC) {
ts->tv_nsec -= (long) NS_PER_SEC;
ts->tv_sec++;
}
}
static void ts_to_timestamp(struct timespec *src, struct Timestamp *dst)
{
dst->seconds_lsb = src->tv_sec;
dst->seconds_msb = 0;
dst->nanoseconds = src->tv_nsec;
}
/*
* Returns non-zero if the announce message is different than last.
*/
static int add_foreign_master(struct port *p, struct ptp_message *m)
{
struct foreign_clock *fc;
struct ptp_message *tmp;
int broke_threshold = 0, diff = 0;
LIST_FOREACH(fc, &p->foreign_masters, list) {
if (msg_source_equal(m, fc))
break;
}
if (!fc) {
pr_notice("port %hu: new foreign master %s", portnum(p),
pid2str(&m->header.sourcePortIdentity));
fc = malloc(sizeof(*fc));
if (!fc) {
pr_err("low memory, failed to add foreign master");
return 0;
}
memset(fc, 0, sizeof(*fc));
LIST_INSERT_HEAD(&p->foreign_masters, fc, list);
fc->port = p;
fc->dataset.sender = m->header.sourcePortIdentity;
/* We do not count this first message, see 9.5.3(b) */
return 0;
}
/*
* If this message breaks the threshold, that is an important change.
*/
fc_prune(fc);
if (FOREIGN_MASTER_THRESHOLD - 1 == fc->n_messages)
broke_threshold = 1;
/*
* Okay, go ahead and add this announcement.
*/
msg_get(m);
fc->n_messages++;
TAILQ_INSERT_HEAD(&fc->messages, m, list);
/*
* Test if this announcement contains changed information.
*/
if (fc->n_messages > 1) {
tmp = TAILQ_NEXT(m, list);
diff = announce_compare(m, tmp);
}
return broke_threshold || diff;
}
static int follow_up_info_append(struct port *p, struct ptp_message *m)
{
struct follow_up_info_tlv *fui;
fui = (struct follow_up_info_tlv *) m->follow_up.suffix;
fui->type = TLV_ORGANIZATION_EXTENSION;
fui->length = sizeof(*fui) - sizeof(fui->type) - sizeof(fui->length);
memcpy(fui->id, ieee8021_id, sizeof(ieee8021_id));
fui->subtype[2] = 1;
m->tlv_count = 1;
return sizeof(*fui);
}
static struct follow_up_info_tlv *follow_up_info_extract(struct ptp_message *m)
{
struct follow_up_info_tlv *f;
f = (struct follow_up_info_tlv *) m->follow_up.suffix;
if (m->tlv_count != 1 ||
f->type != TLV_ORGANIZATION_EXTENSION ||
f->length != sizeof(*f) - sizeof(f->type) - sizeof(f->length) ||
// memcmp(f->id, ieee8021_id, sizeof(ieee8021_id)) ||
f->subtype[0] || f->subtype[1] || f->subtype[2] != 1) {
return NULL;
}
return f;
}
static void free_foreign_masters(struct port *p)
{
struct foreign_clock *fc;
while ((fc = LIST_FIRST(&p->foreign_masters)) != NULL) {
LIST_REMOVE(fc, list);
fc_clear(fc);
free(fc);
}
}
static int fup_sync_ok(struct ptp_message *fup, struct ptp_message *sync)
{
int64_t tfup, tsync;
tfup = tmv_to_nanoseconds(timespec_to_tmv(fup->hwts.sw));
tsync = tmv_to_nanoseconds(timespec_to_tmv(sync->hwts.sw));
/*
* NB - If the sk_check_fupsync option is not enabled, then
* both of these time stamps will be zero.
*/
if (tfup < tsync) {
return 0;
}
return 1;
}
static int incapable_ignore(struct port *p, struct ptp_message *m)
{
if (port_capable(p)) {
return 0;
}
if (msg_type(m) == ANNOUNCE || msg_type(m) == SYNC) {
return 1;
}
return 0;
}
static int path_trace_append(struct port *p, struct ptp_message *m,
struct parent_ds *dad)
{
struct path_trace_tlv *ptt;
int length = 1 + dad->path_length;
if (length > PATH_TRACE_MAX) {
return 0;
}
ptt = (struct path_trace_tlv *) m->announce.suffix;
ptt->type = TLV_PATH_TRACE;
ptt->length = length * sizeof(struct ClockIdentity);
memcpy(ptt->cid, dad->ptl, ptt->length);
ptt->cid[length - 1] = clock_identity(p->clock);
m->tlv_count = 1;
return ptt->length + sizeof(ptt->type) + sizeof(ptt->length);
}
static int path_trace_ignore(struct port *p, struct ptp_message *m)
{
struct ClockIdentity cid;
struct path_trace_tlv *ptt;
int i, cnt;
if (!p->pod.path_trace_enabled) {
return 0;
}
if (msg_type(m) != ANNOUNCE) {
return 0;
}
if (m->tlv_count != 1) {
return 1;
}
ptt = (struct path_trace_tlv *) m->announce.suffix;
if (ptt->type != TLV_PATH_TRACE) {
return 1;
}
cnt = path_length(ptt);
cid = clock_identity(p->clock);
for (i = 0; i < cnt; i++) {
if (0 == memcmp(&ptt->cid[i], &cid, sizeof(cid)))
return 1;
}
return 0;
}
static int peer_prepare_and_send(struct port *p, struct ptp_message *msg,
int event)
{
int cnt;
if (msg_pre_send(msg)) {
return -1;
}
cnt = transport_peer(p->trp, &p->fda, event, msg);
if (cnt <= 0) {
return -1;
}
if (msg_sots_valid(msg)) {
ts_add(&msg->hwts.ts, p->pod.tx_timestamp_offset);
}
return 0;
}
static int port_capable(struct port *p)
{
if (!port_is_ieee8021as(p)) {
/* Normal 1588 ports are always capable. */
goto capable;
}
if (tmv_to_nanoseconds(p->peer_delay) > p->neighborPropDelayThresh) {
if (p->asCapable)
pr_debug("port %hu: peer_delay (%" PRId64 ") > neighborPropDelayThresh "
"(%" PRId32 "), resetting asCapable", portnum(p),
tmv_to_nanoseconds(p->peer_delay),
p->neighborPropDelayThresh);
goto not_capable;
}
if (tmv_to_nanoseconds(p->peer_delay) < p->min_neighbor_prop_delay) {
if (p->asCapable)
pr_debug("port %hu: peer_delay (%" PRId64 ") < min_neighbor_prop_delay "
"(%" PRId32 "), resetting asCapable", portnum(p),
tmv_to_nanoseconds(p->peer_delay),
p->min_neighbor_prop_delay);
goto not_capable;
}
if (p->pdr_missing > ALLOWED_LOST_RESPONSES) {
if (p->asCapable)
pr_debug("port %hu: missed %d peer delay resp, "
"resetting asCapable", portnum(p), p->pdr_missing);
goto not_capable;
}
if (p->multiple_seq_pdr_count) {
if (p->asCapable)
pr_debug("port %hu: multiple sequential peer delay resp, "
"resetting asCapable", portnum(p));
goto not_capable;
}
if (!p->peer_portid_valid) {
if (p->asCapable)
pr_debug("port %hu: invalid peer port id, "
"resetting asCapable", portnum(p));
goto not_capable;
}
if (!p->nrate.ratio_valid) {
if (p->asCapable)
pr_debug("port %hu: invalid nrate, "
"resetting asCapable", portnum(p));
goto not_capable;
}
capable:
if (!p->asCapable)
pr_debug("port %hu: setting asCapable", portnum(p));
p->asCapable = 1;
return 1;
not_capable:
if (p->asCapable)
port_nrate_initialize(p);
p->asCapable = 0;
return 0;
}
static int port_clr_tmo(int fd)
{
struct itimerspec tmo = {
{0, 0}, {0, 0}
};
return timerfd_settime(fd, 0, &tmo, NULL);
}
static int port_ignore(struct port *p, struct ptp_message *m)
{
struct ClockIdentity c1, c2;
if (incapable_ignore(p, m)) {
return 1;
}
if (path_trace_ignore(p, m)) {
return 1;
}
if (msg_transport_specific(m) != p->transportSpecific) {
return 1;
}
if (pid_eq(&m->header.sourcePortIdentity, &p->portIdentity)) {
return 1;
}
if (m->header.domainNumber != clock_domain_number(p->clock)) {
return 1;
}
c1 = clock_identity(p->clock);
c2 = m->header.sourcePortIdentity.clockIdentity;
if (0 == memcmp(&c1, &c2, sizeof(c1))) {
return 1;
}
return 0;
}
/*
* Test whether a 802.1AS port may transmit a sync message.
*/
static int port_sync_incapable(struct port *p)
{
struct ClockIdentity cid;
struct PortIdentity pid;
if (!port_is_ieee8021as(p)) {
return 0;
}
if (clock_gm_capable(p->clock)) {
return 0;
}
cid = clock_identity(p->clock);
pid = clock_parent_identity(p->clock);
if (!memcmp(&cid, &pid.clockIdentity, sizeof(cid))) {
/*
* We are the GM, but without gmCapable set.
*/
return 1;
}
return 0;
}
static int port_is_ieee8021as(struct port *p)
{
return p->pod.follow_up_info ? 1 : 0;
}
static void port_management_send_error(struct port *p, struct port *ingress,
struct ptp_message *msg, int error_id)
{
if (port_management_error(p->portIdentity, ingress, msg, error_id))
pr_err("port %hu: management error failed", portnum(p));
}
static const Octet profile_id_drr[] = {0x00, 0x1B, 0x19, 0x00, 0x01, 0x00};
static const Octet profile_id_p2p[] = {0x00, 0x1B, 0x19, 0x00, 0x02, 0x00};
static int port_management_fill_response(struct port *target,
struct ptp_message *rsp, int id)
{
int datalen = 0, respond = 0;
struct management_tlv *tlv;
struct management_tlv_datum *mtd;
struct portDS *pds;
struct port_ds_np *pdsnp;
struct port_properties_np *ppn;
struct clock_description *desc;
struct mgmt_clock_description *cd;
uint8_t *buf;
uint16_t u16;
tlv = (struct management_tlv *) rsp->management.suffix;
tlv->type = TLV_MANAGEMENT;
tlv->id = id;
switch (id) {
case TLV_NULL_MANAGEMENT:
datalen = 0;
respond = 1;
break;
case TLV_CLOCK_DESCRIPTION:
cd = &rsp->last_tlv.cd;
buf = tlv->data;
cd->clockType = (UInteger16 *) buf;
buf += sizeof(*cd->clockType);
if (clock_num_ports(target->clock) > 1) {
*cd->clockType = CLOCK_TYPE_BOUNDARY;
} else {
*cd->clockType = CLOCK_TYPE_ORDINARY;
}
cd->physicalLayerProtocol = (struct PTPText *) buf;
switch(transport_type(target->trp)) {
case TRANS_UDP_IPV4:
case TRANS_UDP_IPV6:
case TRANS_IEEE_802_3:
ptp_text_set(cd->physicalLayerProtocol, "IEEE 802.3");
break;
default:
ptp_text_set(cd->physicalLayerProtocol, NULL);
break;
}
buf += sizeof(struct PTPText) + cd->physicalLayerProtocol->length;
cd->physicalAddress = (struct PhysicalAddress *) buf;
u16 = transport_physical_addr(target->trp,
cd->physicalAddress->address);
memcpy(&cd->physicalAddress->length, &u16, 2);
buf += sizeof(struct PhysicalAddress) + u16;
cd->protocolAddress = (struct PortAddress *) buf;
u16 = transport_type(target->trp);
memcpy(&cd->protocolAddress->networkProtocol, &u16, 2);
u16 = transport_protocol_addr(target->trp,
cd->protocolAddress->address);
memcpy(&cd->protocolAddress->addressLength, &u16, 2);
buf += sizeof(struct PortAddress) + u16;
desc = clock_description(target->clock);
cd->manufacturerIdentity = buf;
memcpy(cd->manufacturerIdentity,
desc->manufacturerIdentity, OUI_LEN);
buf += OUI_LEN;
*(buf++) = 0; /* reserved */
cd->productDescription = (struct PTPText *) buf;
ptp_text_copy(cd->productDescription, &desc->productDescription);
buf += sizeof(struct PTPText) + cd->productDescription->length;
cd->revisionData = (struct PTPText *) buf;
ptp_text_copy(cd->revisionData, &desc->revisionData);
buf += sizeof(struct PTPText) + cd->revisionData->length;
cd->userDescription = (struct PTPText *) buf;
ptp_text_copy(cd->userDescription, &desc->userDescription);
buf += sizeof(struct PTPText) + cd->userDescription->length;
if (target->delayMechanism == DM_P2P) {
memcpy(buf, profile_id_p2p, PROFILE_ID_LEN);
} else {
memcpy(buf, profile_id_drr, PROFILE_ID_LEN);
}
buf += PROFILE_ID_LEN;
datalen = buf - tlv->data;
respond = 1;
break;
case TLV_PORT_DATA_SET:
pds = (struct portDS *) tlv->data;
pds->portIdentity = target->portIdentity;
if (target->state == PS_GRAND_MASTER) {
pds->portState = PS_MASTER;
} else {
pds->portState = target->state;
}
pds->logMinDelayReqInterval = target->logMinDelayReqInterval;
pds->peerMeanPathDelay = target->peerMeanPathDelay;
pds->logAnnounceInterval = target->logAnnounceInterval;
pds->announceReceiptTimeout = target->announceReceiptTimeout;
pds->logSyncInterval = target->logSyncInterval;
if (target->delayMechanism) {
pds->delayMechanism = target->delayMechanism;
} else {
pds->delayMechanism = DM_E2E;
}
pds->logMinPdelayReqInterval = target->logMinPdelayReqInterval;
pds->versionNumber = target->versionNumber;
datalen = sizeof(*pds);
respond = 1;
break;
case TLV_LOG_ANNOUNCE_INTERVAL:
mtd = (struct management_tlv_datum *) tlv->data;
mtd->val = target->logAnnounceInterval;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_ANNOUNCE_RECEIPT_TIMEOUT:
mtd = (struct management_tlv_datum *) tlv->data;
mtd->val = target->announceReceiptTimeout;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_LOG_SYNC_INTERVAL:
mtd = (struct management_tlv_datum *) tlv->data;
mtd->val = target->logSyncInterval;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_VERSION_NUMBER:
mtd = (struct management_tlv_datum *) tlv->data;
mtd->val = target->versionNumber;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_DELAY_MECHANISM:
mtd = (struct management_tlv_datum *) tlv->data;
if (target->delayMechanism)
mtd->val = target->delayMechanism;
else
mtd->val = DM_E2E;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_LOG_MIN_PDELAY_REQ_INTERVAL:
mtd = (struct management_tlv_datum *) tlv->data;
mtd->val = target->logMinPdelayReqInterval;
datalen = sizeof(*mtd);
respond = 1;
break;
case TLV_PORT_DATA_SET_NP:
pdsnp = (struct port_ds_np *) tlv->data;
pdsnp->neighborPropDelayThresh = target->neighborPropDelayThresh;
pdsnp->asCapable = target->asCapable;
datalen = sizeof(*pdsnp);
respond = 1;
break;
case TLV_PORT_PROPERTIES_NP:
ppn = (struct port_properties_np *)tlv->data;
ppn->portIdentity = target->portIdentity;
if (target->state == PS_GRAND_MASTER)
ppn->port_state = PS_MASTER;
else
ppn->port_state = target->state;
ppn->timestamping = target->timestamping;
ptp_text_set(&ppn->interface, target->name);
datalen = sizeof(*ppn) + ppn->interface.length;
respond = 1;
break;
}
if (respond) {
if (datalen % 2) {
tlv->data[datalen] = 0;
datalen++;
}
tlv->length = sizeof(tlv->id) + datalen;
rsp->header.messageLength += sizeof(*tlv) + datalen;
rsp->tlv_count = 1;
}
return respond;
}
static int port_management_get_response(struct port *target,
struct port *ingress, int id,
struct ptp_message *req)
{
struct PortIdentity pid = port_identity(target);
struct ptp_message *rsp;
int respond;
rsp = port_management_reply(pid, ingress, req);
if (!rsp) {
return 0;
}
respond = port_management_fill_response(target, rsp, id);
if (respond)
port_prepare_and_send(ingress, rsp, 0);
msg_put(rsp);
return respond;
}
static int port_management_set(struct port *target,
struct port *ingress, int id,
struct ptp_message *req)
{
int respond = 0;
struct management_tlv *tlv;
struct port_ds_np *pdsnp;
tlv = (struct management_tlv *) req->management.suffix;
switch (id) {
case TLV_PORT_DATA_SET_NP:
pdsnp = (struct port_ds_np *) tlv->data;
target->neighborPropDelayThresh = pdsnp->neighborPropDelayThresh;
respond = 1;
break;
}
if (respond && !port_management_get_response(target, ingress, id, req))
pr_err("port %hu: failed to send management set response", portnum(target));
return respond ? 1 : 0;
}
static void port_nrate_calculate(struct port *p, tmv_t t3, tmv_t t4, tmv_t c)
{
tmv_t origin2;
struct nrate_estimator *n = &p->nrate;
/*
* We experienced a successful exchanges of peer delay request
* and response, reset pdr_missing for this port.
*/
p->pdr_missing = 0;
if (!n->ingress1) {
n->ingress1 = t4;
n->origin1 = tmv_add(t3, c);
return;
}
n->count++;
if (n->count < n->max_count) {
return;
}
origin2 = tmv_add(t3, c);
if (tmv_eq(t4, n->ingress1)) {
pr_warning("bad timestamps in nrate calculation");
return;
}
n->ratio =
tmv_dbl(tmv_sub(origin2, n->origin1)) /
tmv_dbl(tmv_sub(t4, n->ingress1));
n->ingress1 = t4;
n->origin1 = origin2;
n->count = 0;
n->ratio_valid = 1;
}
static void port_nrate_initialize(struct port *p)
{
int shift = p->pod.freq_est_interval - p->logMinPdelayReqInterval;
if (shift < 0)
shift = 0;
else if (shift >= sizeof(int) * 8) {
shift = sizeof(int) * 8 - 1;
pr_warning("freq_est_interval is too long");
}
/* We start in the 'incapable' state. */
p->pdr_missing = ALLOWED_LOST_RESPONSES + 1;
p->asCapable = 0;
p->peer_portid_valid = 0;
p->nrate.origin1 = tmv_zero();
p->nrate.ingress1 = tmv_zero();
p->nrate.max_count = (1 << shift);
p->nrate.count = 0;
p->nrate.ratio = 1.0;
p->nrate.ratio_valid = 0;
}
static int port_set_announce_tmo(struct port *p)
{
return set_tmo_random(p->fda.fd[FD_ANNOUNCE_TIMER],
p->announceReceiptTimeout,
p->pod.announce_span, p->logAnnounceInterval);
}
static int port_set_delay_tmo(struct port *p)
{
if (p->delayMechanism == DM_P2P) {
return set_tmo_log(p->fda.fd[FD_DELAY_TIMER], 1,
p->logMinPdelayReqInterval);
} else {
return set_tmo_random(p->fda.fd[FD_DELAY_TIMER], 0, 2,
p->logMinDelayReqInterval);
}
}
static int port_set_manno_tmo(struct port *p)
{
return set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, p->logAnnounceInterval);
}
static int port_set_qualification_tmo(struct port *p)
{
return set_tmo_log(p->fda.fd[FD_QUALIFICATION_TIMER],
1+clock_steps_removed(p->clock), p->logAnnounceInterval);
}
static int port_set_sync_rx_tmo(struct port *p)
{
return set_tmo_log(p->fda.fd[FD_SYNC_RX_TIMER],
p->syncReceiptTimeout, p->logSyncInterval);
}
static int port_set_sync_tx_tmo(struct port *p)
{
return set_tmo_log(p->fda.fd[FD_SYNC_TX_TIMER], 1, p->logSyncInterval);
}
static void port_show_transition(struct port *p,
enum port_state next, enum fsm_event event)
{
if (event == EV_FAULT_DETECTED) {
pr_notice("port %hu: %s to %s on %s (%s)", portnum(p),
ps_str[p->state], ps_str[next], ev_str[event],
ft_str(last_fault_type(p)));
} else {
pr_notice("port %hu: %s to %s on %s", portnum(p),
ps_str[p->state], ps_str[next], ev_str[event]);
}
}
static void port_slave_priority_warning(struct port *p)
{
UInteger16 n = portnum(p);
pr_warning("port %hu: master state recommended in slave only mode", n);
pr_warning("port %hu: defaultDS.priority1 probably misconfigured", n);
}
static void port_synchronize(struct port *p,
struct timespec ingress_ts,
struct timestamp origin_ts,
Integer64 correction1, Integer64 correction2)
{
enum servo_state state;
port_set_sync_rx_tmo(p);
state = clock_synchronize(p->clock, ingress_ts, origin_ts,
correction1, correction2);
switch (state) {
case SERVO_UNLOCKED:
port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0);
break;
case SERVO_JUMP:
port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0);
if (p->delay_req) {
msg_put(p->delay_req);
p->delay_req = NULL;
}
if (p->peer_delay_req) {
msg_put(p->peer_delay_req);
p->peer_delay_req = NULL;
}
break;
case SERVO_LOCKED:
port_dispatch(p, EV_MASTER_CLOCK_SELECTED, 0);
break;
}
}
/*
* Handle out of order packets. The network stack might
* provide the follow up _before_ the sync message. After all,
* they can arrive on two different ports. In addition, time
* stamping in PHY devices might delay the event packets.
*/
static void port_syfufsm(struct port *p, enum syfu_event event,
struct ptp_message *m)
{
struct ptp_message *syn, *fup;
switch (p->syfu) {
case SF_EMPTY:
switch (event) {
case SYNC_MISMATCH:
msg_get(m);
p->last_syncfup = m;
p->syfu = SF_HAVE_SYNC;
break;
case FUP_MISMATCH:
msg_get(m);
p->last_syncfup = m;
p->syfu = SF_HAVE_FUP;
break;
case SYNC_MATCH:
break;
case FUP_MATCH:
break;
}
break;
case SF_HAVE_SYNC:
switch (event) {
case SYNC_MISMATCH:
msg_put(p->last_syncfup);
msg_get(m);
p->last_syncfup = m;
break;
case SYNC_MATCH:
break;
case FUP_MISMATCH:
msg_put(p->last_syncfup);
msg_get(m);
p->last_syncfup = m;
p->syfu = SF_HAVE_FUP;
break;
case FUP_MATCH:
syn = p->last_syncfup;
port_synchronize(p, syn->hwts.ts, m->ts.pdu,
syn->header.correction,
m->header.correction);
msg_put(p->last_syncfup);
p->syfu = SF_EMPTY;
break;
}
break;
case SF_HAVE_FUP:
switch (event) {
case SYNC_MISMATCH:
msg_put(p->last_syncfup);
msg_get(m);
p->last_syncfup = m;
p->syfu = SF_HAVE_SYNC;
break;
case SYNC_MATCH:
fup = p->last_syncfup;
port_synchronize(p, m->hwts.ts, fup->ts.pdu,
m->header.correction,
fup->header.correction);
msg_put(p->last_syncfup);
p->syfu = SF_EMPTY;
break;
case FUP_MISMATCH:
msg_put(p->last_syncfup);
msg_get(m);
p->last_syncfup = m;
break;
case FUP_MATCH:
break;
}
break;
}
}
static int port_pdelay_request(struct port *p)
{
struct ptp_message *msg;
int err;
/* If multiple pdelay resp were not detected the counter can be reset */
if (!p->multiple_pdr_detected)
p->multiple_seq_pdr_count = 0;
p->multiple_pdr_detected = 0;
msg = msg_allocate();
if (!msg)
return -1;
msg->hwts.type = p->timestamping;
msg->header.tsmt = PDELAY_REQ | p->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = sizeof(struct pdelay_req_msg);
msg->header.domainNumber = clock_domain_number(p->clock);
msg->header.correction = -p->pod.asymmetry;
msg->header.sourcePortIdentity = p->portIdentity;
msg->header.sequenceId = p->seqnum.delayreq++;
msg->header.control = CTL_OTHER;
msg->header.logMessageInterval = port_is_ieee8021as(p) ?
p->logMinPdelayReqInterval : 0x7f;
err = peer_prepare_and_send(p, msg, 1);
if (err) {
pr_err("port %hu: send peer delay request failed", portnum(p));
goto out;
}
if (msg_sots_missing(msg)) {
pr_err("missing timestamp on transmitted peer delay request");
goto out;
}
if (p->peer_delay_req) {
if (port_capable(p)) {
p->pdr_missing++;
}
msg_put(p->peer_delay_req);
}
p->peer_delay_req = msg;
return 0;
out:
msg_put(msg);
return -1;
}
static int port_delay_request(struct port *p)
{
struct ptp_message *msg;
/* Time to send a new request, forget current pdelay resp and fup */
if (p->peer_delay_resp) {
msg_put(p->peer_delay_resp);
p->peer_delay_resp = NULL;
}
if (p->peer_delay_fup) {
msg_put(p->peer_delay_fup);
p->peer_delay_fup = NULL;
}
if (p->delayMechanism == DM_P2P)
return port_pdelay_request(p);
msg = msg_allocate();
if (!msg)
return -1;
msg->hwts.type = p->timestamping;
msg->header.tsmt = DELAY_REQ | p->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = sizeof(struct delay_req_msg);
msg->header.domainNumber = clock_domain_number(p->clock);
msg->header.correction = -p->pod.asymmetry;
msg->header.sourcePortIdentity = p->portIdentity;
msg->header.sequenceId = p->seqnum.delayreq++;
msg->header.control = CTL_DELAY_REQ;
msg->header.logMessageInterval = 0x7f;
if (port_prepare_and_send(p, msg, 1)) {
pr_err("port %hu: send delay request failed", portnum(p));
goto out;
}
if (msg_sots_missing(msg)) {
pr_err("missing timestamp on transmitted delay request");
goto out;
}
if (p->delay_req)
msg_put(p->delay_req);
p->delay_req = msg;
return 0;
out:
msg_put(msg);
return -1;
}
static int port_tx_announce(struct port *p)
{
struct parent_ds *dad = clock_parent_ds(p->clock);
struct timePropertiesDS *tp = clock_time_properties(p->clock);
struct ptp_message *msg;
int err, pdulen;
if (!port_capable(p)) {
return 0;
}
msg = msg_allocate();
if (!msg)
return -1;
pdulen = sizeof(struct announce_msg);
msg->hwts.type = p->timestamping;
if (p->pod.path_trace_enabled)
pdulen += path_trace_append(p, msg, dad);
msg->header.tsmt = ANNOUNCE | p->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = pdulen;
msg->header.domainNumber = clock_domain_number(p->clock);
msg->header.sourcePortIdentity = p->portIdentity;
msg->header.sequenceId = p->seqnum.announce++;
msg->header.control = CTL_OTHER;
msg->header.logMessageInterval = p->logAnnounceInterval;
msg->header.flagField[1] = tp->flags;
msg->announce.currentUtcOffset = tp->currentUtcOffset;
msg->announce.grandmasterPriority1 = dad->pds.grandmasterPriority1;
msg->announce.grandmasterClockQuality = dad->pds.grandmasterClockQuality;
msg->announce.grandmasterPriority2 = dad->pds.grandmasterPriority2;
msg->announce.grandmasterIdentity = dad->pds.grandmasterIdentity;
msg->announce.stepsRemoved = clock_steps_removed(p->clock);
msg->announce.timeSource = tp->timeSource;
err = port_prepare_and_send(p, msg, 0);
if (err)
pr_err("port %hu: send announce failed", portnum(p));
msg_put(msg);
return err;
}
static int port_tx_sync(struct port *p)
{
struct ptp_message *msg, *fup;
int err, pdulen;
int event = p->timestamping == TS_ONESTEP ? TRANS_ONESTEP : TRANS_EVENT;
if (!port_capable(p)) {
return 0;
}
if (port_sync_incapable(p)) {
return 0;
}
msg = msg_allocate();
if (!msg)
return -1;
fup = msg_allocate();
if (!fup) {
msg_put(msg);
return -1;
}
pdulen = sizeof(struct sync_msg);
msg->hwts.type = p->timestamping;
msg->header.tsmt = SYNC | p->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = pdulen;
msg->header.domainNumber = clock_domain_number(p->clock);
msg->header.sourcePortIdentity = p->portIdentity;
msg->header.sequenceId = p->seqnum.sync++;
msg->header.control = CTL_SYNC;
msg->header.logMessageInterval = p->logSyncInterval;
if (p->timestamping != TS_ONESTEP)
msg->header.flagField[0] |= TWO_STEP;
err = port_prepare_and_send(p, msg, event);
if (err) {
pr_err("port %hu: send sync failed", portnum(p));
goto out;
}
if (p->timestamping == TS_ONESTEP) {
goto out;
} else if (msg_sots_missing(msg)) {
pr_err("missing timestamp on transmitted sync");
err = -1;
goto out;
}
/*
* Send the follow up message right away.
*/
pdulen = sizeof(struct follow_up_msg);
fup->hwts.type = p->timestamping;
if (p->pod.follow_up_info)
pdulen += follow_up_info_append(p, fup);
fup->header.tsmt = FOLLOW_UP | p->transportSpecific;
fup->header.ver = PTP_VERSION;
fup->header.messageLength = pdulen;
fup->header.domainNumber = clock_domain_number(p->clock);
fup->header.sourcePortIdentity = p->portIdentity;
fup->header.sequenceId = p->seqnum.sync - 1;
fup->header.control = CTL_FOLLOW_UP;
fup->header.logMessageInterval = p->logSyncInterval;
ts_to_timestamp(&msg->hwts.ts, &fup->follow_up.preciseOriginTimestamp);
err = port_prepare_and_send(p, fup, 0);
if (err)
pr_err("port %hu: send follow up failed", portnum(p));
out:
msg_put(msg);
msg_put(fup);
return err;
}
/*
* port initialize and disable
*/
static int port_is_enabled(struct port *p)
{
switch (p->state) {
case PS_INITIALIZING:
case PS_FAULTY:
case PS_DISABLED:
return 0;
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_GRAND_MASTER:
case PS_PASSIVE:
case PS_UNCALIBRATED:
case PS_SLAVE:
break;
}
return 1;
}
static void flush_last_sync(struct port *p)
{
if (p->syfu != SF_EMPTY) {
msg_put(p->last_syncfup);
p->syfu = SF_EMPTY;
}
}
static void flush_delay_req(struct port *p)
{
if (p->delay_req) {
msg_put(p->delay_req);
p->delay_req = NULL;
}
}
static void flush_peer_delay(struct port *p)
{
if (p->peer_delay_req) {
msg_put(p->peer_delay_req);
p->peer_delay_req = NULL;
}
if (p->peer_delay_resp) {
msg_put(p->peer_delay_resp);
p->peer_delay_resp = NULL;
}
if (p->peer_delay_fup) {
msg_put(p->peer_delay_fup);
p->peer_delay_fup = NULL;
}
}
static void port_clear_fda(struct port *p, int count)
{
int i;
for (i = 0; i < count; i++)
p->fda.fd[i] = -1;
}
static void port_disable(struct port *p)
{
int i;
flush_last_sync(p);
flush_delay_req(p);
flush_peer_delay(p);
p->best = NULL;
free_foreign_masters(p);
transport_close(p->trp, &p->fda);
for (i = 0; i < N_TIMER_FDS; i++) {
close(p->fda.fd[FD_ANNOUNCE_TIMER + i]);
}
port_clear_fda(p, N_POLLFD);
clock_fda_changed(p->clock);
}
static int port_initialize(struct port *p)
{
int fd[N_TIMER_FDS], i;
p->multiple_seq_pdr_count = 0;
p->multiple_pdr_detected = 0;
p->last_fault_type = FT_UNSPECIFIED;
p->logMinDelayReqInterval = p->pod.logMinDelayReqInterval;
p->peerMeanPathDelay = 0;
p->logAnnounceInterval = p->pod.logAnnounceInterval;
p->announceReceiptTimeout = p->pod.announceReceiptTimeout;
p->syncReceiptTimeout = p->pod.syncReceiptTimeout;
p->transportSpecific = p->pod.transportSpecific;
p->logSyncInterval = p->pod.logSyncInterval;
p->logMinPdelayReqInterval = p->pod.logMinPdelayReqInterval;
p->neighborPropDelayThresh = p->pod.neighborPropDelayThresh;
p->min_neighbor_prop_delay = p->pod.min_neighbor_prop_delay;
for (i = 0; i < N_TIMER_FDS; i++) {
fd[i] = -1;
}
for (i = 0; i < N_TIMER_FDS; i++) {
fd[i] = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd[i] < 0) {
pr_err("timerfd_create: %s", strerror(errno));
goto no_timers;
}
}
if (transport_open(p->trp, p->name, &p->fda, p->timestamping))
goto no_tropen;
for (i = 0; i < N_TIMER_FDS; i++) {
p->fda.fd[FD_ANNOUNCE_TIMER + i] = fd[i];
}
if (port_set_announce_tmo(p))
goto no_tmo;
port_nrate_initialize(p);
clock_fda_changed(p->clock);
return 0;
no_tmo:
transport_close(p->trp, &p->fda);
no_tropen:
no_timers:
for (i = 0; i < N_TIMER_FDS; i++) {
if (fd[i] >= 0)
close(fd[i]);
}
return -1;
}
static int port_renew_transport(struct port *p)
{
int res;
if (!port_is_enabled(p)) {
return 0;
}
transport_close(p->trp, &p->fda);
port_clear_fda(p, FD_ANNOUNCE_TIMER);
res = transport_open(p->trp, p->name, &p->fda, p->timestamping);
/* Need to call clock_fda_changed even if transport_open failed in
* order to update clock to the now closed descriptors. */
clock_fda_changed(p->clock);
return res;
}
/*
* Returns non-zero if the announce message is different than last.
*/
static int update_current_master(struct port *p, struct ptp_message *m)
{
struct foreign_clock *fc = p->best;
struct ptp_message *tmp;
struct parent_ds *dad;
struct path_trace_tlv *ptt;
struct timePropertiesDS tds;
if (!msg_source_equal(m, fc))
return add_foreign_master(p, m);
if (p->state != PS_PASSIVE) {
tds.currentUtcOffset = m->announce.currentUtcOffset;
tds.flags = m->header.flagField[1];
tds.timeSource = m->announce.timeSource;
clock_update_time_properties(p->clock, tds);
}
if (p->pod.path_trace_enabled) {
ptt = (struct path_trace_tlv *) m->announce.suffix;
dad = clock_parent_ds(p->clock);
memcpy(dad->ptl, ptt->cid, ptt->length);
dad->path_length = path_length(ptt);
}
port_set_announce_tmo(p);
fc_prune(fc);
msg_get(m);
fc->n_messages++;
TAILQ_INSERT_HEAD(&fc->messages, m, list);
if (fc->n_messages > 1) {
tmp = TAILQ_NEXT(m, list);
return announce_compare(m, tmp);
}
return 0;
}
struct dataset *port_best_foreign(struct port *port)
{
return port->best ? &port->best->dataset : NULL;
}
/* message processing routines */
/*
* Returns non-zero if the announce message is both qualified and different.
*/
static int process_announce(struct port *p, struct ptp_message *m)
{
int result = 0;
/* Do not qualify announce messages with stepsRemoved >= 255, see
* IEEE1588-2008 section 9.3.2.5 (d)
*/
if (m->announce.stepsRemoved >= 255)
return result;
switch (p->state) {
case PS_INITIALIZING:
case PS_FAULTY:
case PS_DISABLED:
break;
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_GRAND_MASTER:
result = add_foreign_master(p, m);
break;
case PS_PASSIVE:
case PS_UNCALIBRATED:
case PS_SLAVE:
result = update_current_master(p, m);
break;
}
return result;
}
static int process_delay_req(struct port *p, struct ptp_message *m)
{
struct ptp_message *msg;
int err;
if (p->state != PS_MASTER && p->state != PS_GRAND_MASTER)
return 0;
if (p->delayMechanism == DM_P2P) {
pr_warning("port %hu: delay request on P2P port", portnum(p));
return 0;
}
msg = msg_allocate();
if (!msg)
return -1;
msg->hwts.type = p->timestamping;
msg->header.tsmt = DELAY_RESP | p->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = sizeof(struct delay_resp_msg);
msg->header.domainNumber = m->header.domainNumber;
msg->header.correction = m->header.correction;
msg->header.sourcePortIdentity = p->portIdentity;
msg->header.sequenceId = m->header.sequenceId;
msg->header.control = CTL_DELAY_RESP;
msg->header.logMessageInterval = p->logMinDelayReqInterval;
ts_to_timestamp(&m->hwts.ts, &msg->delay_resp.receiveTimestamp);
msg->delay_resp.requestingPortIdentity = m->header.sourcePortIdentity;
err = port_prepare_and_send(p, msg, 0);
if (err)
pr_err("port %hu: send delay response failed", portnum(p));
msg_put(msg);
return err;
}
static void process_delay_resp(struct port *p, struct ptp_message *m)
{
struct delay_req_msg *req;
struct delay_resp_msg *rsp = &m->delay_resp;
struct PortIdentity master;
if (!p->delay_req)
return;
master = clock_parent_identity(p->clock);
req = &p->delay_req->delay_req;
if (p->state != PS_UNCALIBRATED && p->state != PS_SLAVE)
return;
if (!pid_eq(&rsp->requestingPortIdentity, &req->hdr.sourcePortIdentity))
return;
if (rsp->hdr.sequenceId != ntohs(req->hdr.sequenceId))
return;
if (!pid_eq(&master, &m->header.sourcePortIdentity))
return;
clock_path_delay(p->clock, p->delay_req->hwts.ts, m->ts.pdu,
m->header.correction);
if (p->logMinDelayReqInterval != rsp->hdr.logMessageInterval) {
// TODO - validate the input.
p->logMinDelayReqInterval = rsp->hdr.logMessageInterval;
pr_notice("port %hu: minimum delay request interval 2^%d",
portnum(p), p->logMinDelayReqInterval);
}
}
static void process_follow_up(struct port *p, struct ptp_message *m)
{
enum syfu_event event;
struct PortIdentity master;
switch (p->state) {
case PS_INITIALIZING:
case PS_FAULTY:
case PS_DISABLED:
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_GRAND_MASTER:
case PS_PASSIVE:
return;
case PS_UNCALIBRATED:
case PS_SLAVE:
break;
}
master = clock_parent_identity(p->clock);
if (memcmp(&master, &m->header.sourcePortIdentity, sizeof(master)))
return;
if (p->pod.follow_up_info) {
struct follow_up_info_tlv *fui = follow_up_info_extract(m);
if (!fui)
return;
clock_follow_up_info(p->clock, fui);
}
if (p->syfu == SF_HAVE_SYNC &&
p->last_syncfup->header.sequenceId == m->header.sequenceId) {
event = FUP_MATCH;
} else {
event = FUP_MISMATCH;
}
port_syfufsm(p, event, m);
}
static int process_pdelay_req(struct port *p, struct ptp_message *m)
{
struct ptp_message *rsp, *fup;
int err;
if (p->delayMechanism == DM_E2E) {
pr_warning("port %hu: pdelay_req on E2E port", portnum(p));
return 0;
}
if (p->delayMechanism == DM_AUTO) {
pr_info("port %hu: peer detected, switch to P2P", portnum(p));
p->delayMechanism = DM_P2P;
port_set_delay_tmo(p);
}
if (p->peer_portid_valid) {
if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) {
pr_err("port %hu: received pdelay_req msg with "
"unexpected peer port id %s",
portnum(p),
pid2str(&m->header.sourcePortIdentity));
p->peer_portid_valid = 0;
port_capable(p);
}
} else {
p->peer_portid_valid = 1;
p->peer_portid = m->header.sourcePortIdentity;
pr_debug("port %hu: peer port id set to %s", portnum(p),
pid2str(&p->peer_portid));
}
rsp = msg_allocate();
if (!rsp)
return -1;
fup = msg_allocate();
if (!fup) {
msg_put(rsp);
return -1;
}
rsp->hwts.type = p->timestamping;
rsp->header.tsmt = PDELAY_RESP | p->transportSpecific;
rsp->header.ver = PTP_VERSION;
rsp->header.messageLength = sizeof(struct pdelay_resp_msg);
rsp->header.domainNumber = m->header.domainNumber;
rsp->header.sourcePortIdentity = p->portIdentity;
rsp->header.sequenceId = m->header.sequenceId;
rsp->header.control = CTL_OTHER;
rsp->header.logMessageInterval = 0x7f;
/*
* NB - There is no kernel support for one step P2P messaging,
* so we always send a follow up message.
*/
rsp->header.flagField[0] |= TWO_STEP;
/*
* NB - We do not have any fraction nanoseconds for the correction
* fields, neither in the response or the follow up.
*/
ts_to_timestamp(&m->hwts.ts, &rsp->pdelay_resp.requestReceiptTimestamp);
rsp->pdelay_resp.requestingPortIdentity = m->header.sourcePortIdentity;
fup->hwts.type = p->timestamping;
fup->header.tsmt = PDELAY_RESP_FOLLOW_UP | p->transportSpecific;
fup->header.ver = PTP_VERSION;
fup->header.messageLength = sizeof(struct pdelay_resp_fup_msg);
fup->header.domainNumber = m->header.domainNumber;
fup->header.correction = m->header.correction;
fup->header.sourcePortIdentity = p->portIdentity;
fup->header.sequenceId = m->header.sequenceId;
fup->header.control = CTL_OTHER;
fup->header.logMessageInterval = 0x7f;
fup->pdelay_resp_fup.requestingPortIdentity = m->header.sourcePortIdentity;
err = peer_prepare_and_send(p, rsp, 1);
if (err) {
pr_err("port %hu: send peer delay response failed", portnum(p));
goto out;
}
if (msg_sots_missing(rsp)) {
pr_err("missing timestamp on transmitted peer delay response");
goto out;
}
ts_to_timestamp(&rsp->hwts.ts,
&fup->pdelay_resp_fup.responseOriginTimestamp);
err = peer_prepare_and_send(p, fup, 0);
if (err)
pr_err("port %hu: send pdelay_resp_fup failed", portnum(p));
out:
msg_put(rsp);
msg_put(fup);
return err;
}
static void port_peer_delay(struct port *p)
{
tmv_t c1, c2, t1, t2, t3, t4, pd;
struct ptp_message *req = p->peer_delay_req;
struct ptp_message *rsp = p->peer_delay_resp;
struct ptp_message *fup = p->peer_delay_fup;
double adj_t41;
/* Check for response, validate port and sequence number. */
if (!rsp)
return;
if (!pid_eq(&rsp->pdelay_resp.requestingPortIdentity, &p->portIdentity))
return;
if (rsp->header.sequenceId != ntohs(req->header.sequenceId))
return;
t1 = timespec_to_tmv(req->hwts.ts);
t4 = timespec_to_tmv(rsp->hwts.ts);
c1 = correction_to_tmv(rsp->header.correction + p->pod.asymmetry);
/* Process one-step response immediately. */
if (one_step(rsp)) {
t2 = tmv_zero();
t3 = tmv_zero();
c2 = tmv_zero();
goto calc;
}
/* Check for follow up, validate port and sequence number. */
if (!fup)
return;
if (!pid_eq(&fup->pdelay_resp_fup.requestingPortIdentity, &p->portIdentity))
return;
if (fup->header.sequenceId != rsp->header.sequenceId)
return;
if (!source_pid_eq(fup, rsp))
return;
/* Process follow up response. */
t2 = timestamp_to_tmv(rsp->ts.pdu);
t3 = timestamp_to_tmv(fup->ts.pdu);
c2 = correction_to_tmv(fup->header.correction);
calc:
adj_t41 = p->nrate.ratio * clock_rate_ratio(p->clock) *
tmv_dbl(tmv_sub(t4, t1));
pd = tmv_sub(dbl_tmv(adj_t41), tmv_sub(t3, t2));
pd = tmv_sub(pd, c1);
pd = tmv_sub(pd, c2);
pd = tmv_div(pd, 2);
p->peer_delay = filter_sample(p->delay_filter, pd);
p->peerMeanPathDelay = tmv_to_TimeInterval(p->peer_delay);
pr_debug("pdelay %hu %10" PRId64 "%10" PRId64, portnum(p), p->peer_delay, pd);
if (p->pod.follow_up_info)
port_nrate_calculate(p, t3, t4, tmv_add(c1, c2));
if (p->state == PS_UNCALIBRATED || p->state == PS_SLAVE) {
clock_peer_delay(p->clock, p->peer_delay, p->nrate.ratio);
}
msg_put(p->peer_delay_req);
p->peer_delay_req = NULL;
}
static int process_pdelay_resp(struct port *p, struct ptp_message *m)
{
if (p->peer_delay_resp) {
if (!source_pid_eq(p->peer_delay_resp, m)) {
pr_err("port %hu: multiple peer responses", portnum(p));
if (!p->multiple_pdr_detected) {
p->multiple_pdr_detected = 1;
p->multiple_seq_pdr_count++;
}
if (p->multiple_seq_pdr_count >= 3) {
p->last_fault_type = FT_BAD_PEER_NETWORK;
return -1;
}
}
}
if (!p->peer_delay_req) {
pr_err("port %hu: rogue peer delay response", portnum(p));
return -1;
}
if (p->peer_portid_valid) {
if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) {
pr_err("port %hu: received pdelay_resp msg with "
"unexpected peer port id %s",
portnum(p),
pid2str(&m->header.sourcePortIdentity));
p->peer_portid_valid = 0;
port_capable(p);
}
} else {
p->peer_portid_valid = 1;
p->peer_portid = m->header.sourcePortIdentity;
pr_debug("port %hu: peer port id set to %s", portnum(p),
pid2str(&p->peer_portid));
}
if (p->peer_delay_resp) {
msg_put(p->peer_delay_resp);
}
msg_get(m);
p->peer_delay_resp = m;
port_peer_delay(p);
return 0;
}
static void process_pdelay_resp_fup(struct port *p, struct ptp_message *m)
{
if (!p->peer_delay_req)
return;
if (p->peer_delay_fup)
msg_put(p->peer_delay_fup);
msg_get(m);
p->peer_delay_fup = m;
port_peer_delay(p);
}
static void process_sync(struct port *p, struct ptp_message *m)
{
enum syfu_event event;
struct PortIdentity master;
switch (p->state) {
case PS_INITIALIZING:
case PS_FAULTY:
case PS_DISABLED:
case PS_LISTENING:
case PS_PRE_MASTER:
case PS_MASTER:
case PS_GRAND_MASTER:
case PS_PASSIVE:
return;
case PS_UNCALIBRATED:
case PS_SLAVE:
break;
}
master = clock_parent_identity(p->clock);
if (memcmp(&master, &m->header.sourcePortIdentity, sizeof(master))) {
return;
}
if (m->header.logMessageInterval != p->log_sync_interval) {
p->log_sync_interval = m->header.logMessageInterval;
clock_sync_interval(p->clock, p->log_sync_interval);
}
m->header.correction += p->pod.asymmetry;
if (one_step(m)) {
port_synchronize(p, m->hwts.ts, m->ts.pdu,
m->header.correction, 0);
flush_last_sync(p);
return;
}
if (p->syfu == SF_HAVE_FUP &&
fup_sync_ok(p->last_syncfup, m) &&
p->last_syncfup->header.sequenceId == m->header.sequenceId) {
event = SYNC_MATCH;
} else {
event = SYNC_MISMATCH;
}
port_syfufsm(p, event, m);
}
/* public methods */
void port_close(struct port *p)
{
if (port_is_enabled(p)) {
port_disable(p);
}
transport_destroy(p->trp);
filter_destroy(p->delay_filter);
if (p->fault_fd >= 0)
close(p->fault_fd);
free(p);
}
struct foreign_clock *port_compute_best(struct port *p)
{
struct foreign_clock *fc;
struct ptp_message *tmp;
p->best = NULL;
LIST_FOREACH(fc, &p->foreign_masters, list) {
tmp = TAILQ_FIRST(&fc->messages);
if (!tmp)
continue;
announce_to_dataset(tmp, p->clock, &fc->dataset);
fc_prune(fc);
if (fc->n_messages < FOREIGN_MASTER_THRESHOLD)
continue;
if (!p->best)
p->best = fc;
else if (dscmp(&fc->dataset, &p->best->dataset) > 0)
p->best = fc;
else
fc_clear(fc);
}
return p->best;
}
static void port_e2e_transition(struct port *p, enum port_state next)
{
port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]);
port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]);
port_clr_tmo(p->fda.fd[FD_DELAY_TIMER]);
port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]);
port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]);
port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]);
switch (next) {
case PS_INITIALIZING:
break;
case PS_FAULTY:
case PS_DISABLED:
port_disable(p);
break;
case PS_LISTENING:
port_set_announce_tmo(p);
break;
case PS_PRE_MASTER:
port_set_qualification_tmo(p);
break;
case PS_MASTER:
case PS_GRAND_MASTER:
set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/
port_set_sync_tx_tmo(p);
break;
case PS_PASSIVE:
port_set_announce_tmo(p);
break;
case PS_UNCALIBRATED:
flush_last_sync(p);
flush_delay_req(p);
/* fall through */
case PS_SLAVE:
port_set_announce_tmo(p);
port_set_delay_tmo(p);
break;
};
}
static void port_p2p_transition(struct port *p, enum port_state next)
{
port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]);
port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]);
/* Leave FD_DELAY_TIMER running. */
port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]);
port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]);
port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]);
switch (next) {
case PS_INITIALIZING:
break;
case PS_FAULTY:
case PS_DISABLED:
port_disable(p);
break;
case PS_LISTENING:
port_set_announce_tmo(p);
break;
case PS_PRE_MASTER:
port_set_qualification_tmo(p);
break;
case PS_MASTER:
case PS_GRAND_MASTER:
set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/
port_set_sync_tx_tmo(p);
break;
case PS_PASSIVE:
port_set_announce_tmo(p);
break;
case PS_UNCALIBRATED:
flush_last_sync(p);
flush_peer_delay(p);
/* fall through */
case PS_SLAVE:
port_set_announce_tmo(p);
break;
};
}
int port_dispatch(struct port *p, enum fsm_event event, int mdiff)
{
enum port_state next;
struct fault_interval i;
int fri_asap = 0;
if (clock_slave_only(p->clock)) {
if (event == EV_RS_MASTER || event == EV_RS_GRAND_MASTER) {
port_slave_priority_warning(p);
}
next = ptp_slave_fsm(p->state, event, mdiff);
} else {
next = ptp_fsm(p->state, event, mdiff);
}
if (!fault_interval(p, last_fault_type(p), &i) &&
((i.val == FRI_ASAP && i.type == FTMO_LOG2_SECONDS) ||
(i.val == 0 && i.type == FTMO_LINEAR_SECONDS)))
fri_asap = 1;
if (PS_INITIALIZING == next || (PS_FAULTY == next && fri_asap)) {
/*
* This is a special case. Since we initialize the
* port immediately, we can skip right to listening
* state if all goes well.
*/
if (port_is_enabled(p)) {
port_disable(p);
}
next = port_initialize(p) ? PS_FAULTY : PS_LISTENING;
port_show_transition(p, next, event);
p->state = next;
if (next == PS_LISTENING && p->delayMechanism == DM_P2P) {
port_set_delay_tmo(p);
}
port_notify_event(p, NOTIFY_PORT_STATE);
return 1;
}
if (next == p->state)
return 0;
port_show_transition(p, next, event);
if (p->delayMechanism == DM_P2P) {
port_p2p_transition(p, next);
} else {
port_e2e_transition(p, next);
}
p->state = next;
port_notify_event(p, NOTIFY_PORT_STATE);
return 0;
}
enum fsm_event port_event(struct port *p, int fd_index)
{
enum fsm_event event = EV_NONE;
struct ptp_message *msg;
int cnt, fd = p->fda.fd[fd_index], err;
switch (fd_index) {
case FD_ANNOUNCE_TIMER:
case FD_SYNC_RX_TIMER:
pr_debug("port %hu: %s timeout", portnum(p),
fd_index == FD_SYNC_RX_TIMER ? "rx sync" : "announce");
if (p->best)
fc_clear(p->best);
port_set_announce_tmo(p);
if (clock_slave_only(p->clock) && p->delayMechanism != DM_P2P &&
port_renew_transport(p)) {
return EV_FAULT_DETECTED;
}
return EV_ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES;
case FD_DELAY_TIMER:
pr_debug("port %hu: delay timeout", portnum(p));
port_set_delay_tmo(p);
return port_delay_request(p) ? EV_FAULT_DETECTED : EV_NONE;
case FD_QUALIFICATION_TIMER:
pr_debug("port %hu: qualification timeout", portnum(p));
return EV_QUALIFICATION_TIMEOUT_EXPIRES;
case FD_MANNO_TIMER:
pr_debug("port %hu: master tx announce timeout", portnum(p));
port_set_manno_tmo(p);
return port_tx_announce(p) ? EV_FAULT_DETECTED : EV_NONE;
case FD_SYNC_TX_TIMER:
pr_debug("port %hu: master sync timeout", portnum(p));
port_set_sync_tx_tmo(p);
return port_tx_sync(p) ? EV_FAULT_DETECTED : EV_NONE;
}
msg = msg_allocate();
if (!msg)
return EV_FAULT_DETECTED;
msg->hwts.type = p->timestamping;
cnt = transport_recv(p->trp, fd, msg);
if (cnt <= 0) {
pr_err("port %hu: recv message failed", portnum(p));
msg_put(msg);
return EV_FAULT_DETECTED;
}
err = msg_post_recv(msg, cnt);
if (err) {
switch (err) {
case -EBADMSG:
pr_err("port %hu: bad message", portnum(p));
break;
case -ETIME:
pr_err("port %hu: received %s without timestamp",
portnum(p), msg_type_string(msg_type(msg)));
break;
case -EPROTO:
pr_debug("port %hu: ignoring message", portnum(p));
break;
}
msg_put(msg);
return EV_NONE;
}
if (msg_sots_valid(msg)) {
ts_add(&msg->hwts.ts, -p->pod.rx_timestamp_offset);
clock_check_ts(p->clock, msg->hwts.ts);
}
if (port_ignore(p, msg)) {
msg_put(msg);
return EV_NONE;
}
switch (msg_type(msg)) {
case SYNC:
process_sync(p, msg);
break;
case DELAY_REQ:
if (process_delay_req(p, msg))
event = EV_FAULT_DETECTED;
break;
case PDELAY_REQ:
if (process_pdelay_req(p, msg))
event = EV_FAULT_DETECTED;
break;
case PDELAY_RESP:
if (process_pdelay_resp(p, msg))
event = EV_FAULT_DETECTED;
break;
case FOLLOW_UP:
process_follow_up(p, msg);
break;
case DELAY_RESP:
process_delay_resp(p, msg);
break;
case PDELAY_RESP_FOLLOW_UP:
process_pdelay_resp_fup(p, msg);
break;
case ANNOUNCE:
if (process_announce(p, msg))
event = EV_STATE_DECISION_EVENT;
break;
case SIGNALING:
break;
case MANAGEMENT:
if (clock_manage(p->clock, p, msg))
event = EV_STATE_DECISION_EVENT;
break;
}
msg_put(msg);
return event;
}
int port_forward(struct port *p, struct ptp_message *msg)
{
int cnt;
cnt = transport_send(p->trp, &p->fda, 0, msg);
return cnt <= 0 ? -1 : 0;
}
int port_forward_to(struct port *p, struct ptp_message *msg)
{
int cnt;
cnt = transport_sendto(p->trp, &p->fda, 0, msg);
return cnt <= 0 ? -1 : 0;
}
int port_prepare_and_send(struct port *p, struct ptp_message *msg, int event)
{
int cnt;
if (msg_pre_send(msg))
return -1;
cnt = transport_send(p->trp, &p->fda, event, msg);
if (cnt <= 0) {
return -1;
}
if (msg_sots_valid(msg)) {
ts_add(&msg->hwts.ts, p->pod.tx_timestamp_offset);
}
return 0;
}
struct PortIdentity port_identity(struct port *p)
{
return p->portIdentity;
}
int port_number(struct port *p)
{
return portnum(p);
}
int port_manage(struct port *p, struct port *ingress, struct ptp_message *msg)
{
struct management_tlv *mgt;
UInteger16 target = msg->management.targetPortIdentity.portNumber;
if (target != portnum(p) && target != 0xffff) {
return 0;
}
mgt = (struct management_tlv *) msg->management.suffix;
switch (management_action(msg)) {
case GET:
if (port_management_get_response(p, ingress, mgt->id, msg))
return 1;
break;
case SET:
if (port_management_set(p, ingress, mgt->id, msg))
return 1;
break;
case COMMAND:
break;
default:
return -1;
}
switch (mgt->id) {
case TLV_NULL_MANAGEMENT:
case TLV_CLOCK_DESCRIPTION:
case TLV_PORT_DATA_SET:
case TLV_LOG_ANNOUNCE_INTERVAL:
case TLV_ANNOUNCE_RECEIPT_TIMEOUT:
case TLV_LOG_SYNC_INTERVAL:
case TLV_VERSION_NUMBER:
case TLV_ENABLE_PORT:
case TLV_DISABLE_PORT:
case TLV_UNICAST_NEGOTIATION_ENABLE:
case TLV_UNICAST_MASTER_TABLE:
case TLV_UNICAST_MASTER_MAX_TABLE_SIZE:
case TLV_ACCEPTABLE_MASTER_TABLE_ENABLED:
case TLV_ALTERNATE_MASTER:
case TLV_TRANSPARENT_CLOCK_PORT_DATA_SET:
case TLV_DELAY_MECHANISM:
case TLV_LOG_MIN_PDELAY_REQ_INTERVAL:
port_management_send_error(p, ingress, msg, TLV_NOT_SUPPORTED);
break;
default:
port_management_send_error(p, ingress, msg, TLV_NO_SUCH_ID);
return -1;
}
return 1;
}
int port_management_error(struct PortIdentity pid, struct port *ingress,
struct ptp_message *req, Enumeration16 error_id)
{
struct ptp_message *msg;
struct management_tlv *mgt;
struct management_error_status *mes;
int err = 0, pdulen;
msg = port_management_reply(pid, ingress, req);
if (!msg) {
return -1;
}
mgt = (struct management_tlv *) req->management.suffix;
mes = (struct management_error_status *) msg->management.suffix;
mes->type = TLV_MANAGEMENT_ERROR_STATUS;
mes->length = 8;
mes->error = error_id;
mes->id = mgt->id;
pdulen = msg->header.messageLength + sizeof(*mes);
msg->header.messageLength = pdulen;
msg->tlv_count = 1;
err = port_prepare_and_send(ingress, msg, 0);
msg_put(msg);
return err;
}
static struct ptp_message *
port_management_construct(struct PortIdentity pid, struct port *ingress,
UInteger16 sequenceId,
struct PortIdentity *targetPortIdentity,
UInteger8 boundaryHops, uint8_t action)
{
struct ptp_message *msg;
int pdulen;
msg = msg_allocate();
if (!msg)
return NULL;
pdulen = sizeof(struct management_msg);
msg->hwts.type = ingress->timestamping;
msg->header.tsmt = MANAGEMENT | ingress->transportSpecific;
msg->header.ver = PTP_VERSION;
msg->header.messageLength = pdulen;
msg->header.domainNumber = clock_domain_number(ingress->clock);
msg->header.sourcePortIdentity = pid;
msg->header.sequenceId = sequenceId;
msg->header.control = CTL_MANAGEMENT;
msg->header.logMessageInterval = 0x7f;
if (targetPortIdentity)
msg->management.targetPortIdentity = *targetPortIdentity;
msg->management.startingBoundaryHops = boundaryHops;
msg->management.boundaryHops = boundaryHops;
switch (action) {
case GET: case SET:
msg->management.flags = RESPONSE;
break;
case COMMAND:
msg->management.flags = ACKNOWLEDGE;
break;
}
return msg;
}
struct ptp_message *port_management_reply(struct PortIdentity pid,
struct port *ingress,
struct ptp_message *req)
{
UInteger8 boundaryHops;
boundaryHops = req->management.startingBoundaryHops -
req->management.boundaryHops;
return port_management_construct(pid, ingress,
req->header.sequenceId,
&req->header.sourcePortIdentity,
boundaryHops,
management_action(req));
}
struct ptp_message *port_management_notify(struct PortIdentity pid,
struct port *port)
{
return port_management_construct(pid, port, 0, NULL, 1, GET);
}
void port_notify_event(struct port *p, enum notification event)
{
struct PortIdentity pid = port_identity(p);
struct ptp_message *msg;
UInteger16 msg_len;
int id;
switch (event) {
case NOTIFY_PORT_STATE:
id = TLV_PORT_DATA_SET;
break;
default:
return;
}
/* targetPortIdentity and sequenceId will be filled by
* clock_send_notification */
msg = port_management_notify(pid, p);
if (!msg)
return;
if (!port_management_fill_response(p, msg, id))
goto err;
msg_len = msg->header.messageLength;
if (msg_pre_send(msg))
goto err;
clock_send_notification(p->clock, msg, msg_len, event);
err:
msg_put(msg);
}
struct port *port_open(int phc_index,
enum timestamp_type timestamping,
int number,
struct interface *interface,
struct clock *clock)
{
struct port *p = malloc(sizeof(*p));
if (!p)
return NULL;
memset(p, 0, sizeof(*p));
if (interface->transport == TRANS_UDS)
; /* UDS cannot have a PHC. */
else if (!interface->ts_info.valid)
pr_warning("port %d: get_ts_info not supported", number);
else if (phc_index >= 0 && phc_index != interface->ts_info.phc_index) {
pr_err("port %d: PHC device mismatch", number);
pr_err("port %d: /dev/ptp%d requested, but /dev/ptp%d attached",
number, phc_index, interface->ts_info.phc_index);
goto err_port;
}
p->pod = interface->pod;
p->name = interface->name;
p->clock = clock;
p->trp = transport_create(interface->transport);
if (!p->trp)
goto err_port;
p->timestamping = timestamping;
p->portIdentity.clockIdentity = clock_identity(clock);
p->portIdentity.portNumber = number;
p->state = PS_INITIALIZING;
p->delayMechanism = interface->dm;
p->versionNumber = PTP_VERSION;
p->delay_filter = filter_create(interface->delay_filter,
interface->delay_filter_length);
if (!p->delay_filter) {
pr_err("Failed to create delay filter");
goto err_transport;
}
p->nrate.ratio = 1.0;
port_clear_fda(p, N_POLLFD);
p->fault_fd = -1;
if (number) {
p->fault_fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (p->fault_fd < 0) {
pr_err("timerfd_create failed: %m");
goto err_filter;
}
}
return p;
err_filter:
filter_destroy(p->delay_filter);
err_transport:
transport_destroy(p->trp);
err_port:
free(p);
return NULL;
}
enum port_state port_state(struct port *port)
{
return port->state;
}