linuxptp/phc2sys.c

571 lines
13 KiB
C

/**
* @file phc2sys.c
* @brief Utility program to synchronize two clocks via a PPS.
* @note Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <inttypes.h>
#include <linux/pps.h>
#include <linux/ptp_clock.h>
#include "ds.h"
#include "fsm.h"
#include "missing.h"
#include "pi.h"
#include "pmc_common.h"
#include "print.h"
#include "servo.h"
#include "sk.h"
#include "sysoff.h"
#include "tlv.h"
#include "version.h"
#define KP 0.7
#define KI 0.3
#define NS_PER_SEC 1000000000LL
#define max_ppb 512000
#define PHC_PPS_OFFSET_LIMIT 10000000
static clockid_t clock_open(char *device)
{
int fd;
if (device[0] != '/') {
if (!strcasecmp(device, "CLOCK_REALTIME"))
return CLOCK_REALTIME;
fprintf(stderr, "unknown clock %s\n", device);
return CLOCK_INVALID;
}
fd = open(device, O_RDWR);
if (fd < 0) {
fprintf(stderr, "cannot open %s: %m\n", device);
return CLOCK_INVALID;
}
return FD_TO_CLOCKID(fd);
}
static void clock_ppb(clockid_t clkid, double ppb)
{
struct timex tx;
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_FREQUENCY;
tx.freq = (long) (ppb * 65.536);
if (clock_adjtime(clkid, &tx) < 0)
pr_err("failed to adjust the clock: %m");
}
static double clock_ppb_read(clockid_t clkid)
{
double f = 0.0;
struct timex tx;
memset(&tx, 0, sizeof(tx));
if (clock_adjtime(clkid, &tx) < 0)
pr_err("failed to read out the clock frequency adjustment: %m");
else
f = tx.freq / 65.536;
return f;
}
static void clock_step(clockid_t clkid, int64_t ns)
{
struct timex tx;
int sign = 1;
if (ns < 0) {
sign = -1;
ns *= -1;
}
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_SETOFFSET | ADJ_NANO;
tx.time.tv_sec = sign * (ns / NS_PER_SEC);
tx.time.tv_usec = sign * (ns % NS_PER_SEC);
/*
* The value of a timeval is the sum of its fields, but the
* field tv_usec must always be non-negative.
*/
if (tx.time.tv_usec < 0) {
tx.time.tv_sec -= 1;
tx.time.tv_usec += 1000000000;
}
if (clock_adjtime(clkid, &tx) < 0)
pr_err("failed to step clock: %m");
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
struct clock {
clockid_t clkid;
struct servo *servo;
const char *source_label;
};
static void update_clock(struct clock *clock,
int64_t offset, uint64_t ts, int64_t delay)
{
enum servo_state state;
double ppb;
ppb = servo_sample(clock->servo, offset, ts, &state);
switch (state) {
case SERVO_UNLOCKED:
break;
case SERVO_JUMP:
clock_step(clock->clkid, -offset);
/* Fall through. */
case SERVO_LOCKED:
clock_ppb(clock->clkid, -ppb);
break;
}
if (delay >= 0) {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f "
"delay %6" PRId64,
clock->source_label, offset, state, ppb, delay);
} else {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f",
clock->source_label, offset, state, ppb);
}
}
static int read_pps(int fd, int64_t *offset, uint64_t *ts)
{
struct pps_fdata pfd;
pfd.timeout.sec = 10;
pfd.timeout.nsec = 0;
pfd.timeout.flags = ~PPS_TIME_INVALID;
if (ioctl(fd, PPS_FETCH, &pfd)) {
pr_err("failed to fetch PPS: %m");
return 0;
}
*ts = pfd.info.assert_tu.sec * NS_PER_SEC;
*ts += pfd.info.assert_tu.nsec;
*offset = *ts % NS_PER_SEC;
if (*offset > NS_PER_SEC / 2)
*offset -= NS_PER_SEC;
return 1;
}
static int do_pps_loop(struct clock *clock, int fd,
clockid_t src, int n_readings, int sync_offset)
{
int64_t pps_offset, phc_offset, phc_delay;
uint64_t pps_ts, phc_ts;
clock->source_label = "pps";
while (1) {
if (!read_pps(fd, &pps_offset, &pps_ts)) {
continue;
}
/* If a PHC is available, use it to get the whole number
of seconds in the offset and PPS for the rest. */
if (src != CLOCK_INVALID) {
if (!read_phc(src, clock->clkid, n_readings,
&phc_offset, &phc_ts, &phc_delay))
return -1;
/* Convert the time stamp to the PHC time. */
phc_ts -= phc_offset;
/* Check if it is close to the start of the second. */
if (phc_ts % NS_PER_SEC > PHC_PPS_OFFSET_LIMIT) {
pr_warning("PPS is not in sync with PHC"
" (0.%09lld)", phc_ts % NS_PER_SEC);
continue;
}
phc_ts = phc_ts / NS_PER_SEC * NS_PER_SEC;
pps_offset = pps_ts - phc_ts;
pps_offset -= sync_offset * NS_PER_SEC;
}
update_clock(clock, pps_offset, pps_ts, -1);
}
close(fd);
return 0;
}
static int do_sysoff_loop(struct clock *clock, clockid_t src,
int rate, int n_readings, int sync_offset)
{
uint64_t ts;
int64_t offset, delay;
int err = 0, fd = CLOCKID_TO_FD(src);
clock->source_label = "sys";
while (1) {
usleep(1000000 / rate);
if (sysoff_measure(fd, n_readings, &offset, &ts, &delay)) {
err = -1;
break;
}
offset -= sync_offset * NS_PER_SEC;
update_clock(clock, offset, ts, delay);
}
return err;
}
static int do_phc_loop(struct clock *clock, clockid_t src,
int rate, int n_readings, int sync_offset)
{
uint64_t ts;
int64_t offset, delay;
clock->source_label = "phc";
while (1) {
usleep(1000000 / rate);
if (!read_phc(src, clock->clkid, n_readings,
&offset, &ts, &delay)) {
continue;
}
offset -= sync_offset * NS_PER_SEC;
update_clock(clock, offset, ts, delay);
}
return 0;
}
static int is_msg_mgt(struct ptp_message *msg)
{
struct TLV *tlv;
if (msg_type(msg) != MANAGEMENT)
return 0;
if (management_action(msg) != RESPONSE)
return 0;
if (msg->tlv_count != 1)
return 0;
tlv = (struct TLV *) msg->management.suffix;
if (tlv->type != TLV_MANAGEMENT)
return 0;
return 1;
}
static int get_mgt_id(struct ptp_message *msg)
{
return ((struct management_tlv *) msg->management.suffix)->id;
}
static void *get_mgt_data(struct ptp_message *msg)
{
return ((struct management_tlv *) msg->management.suffix)->data;
}
static int run_pmc(int wait_sync, int *utc_offset)
{
struct ptp_message *msg;
struct pmc *pmc;
void *data;
#define N_FD 1
struct pollfd pollfd[N_FD];
#define N_ID 2
int cnt, i = 0, ds_done, ds_requested = 0;
int ds_ids[N_ID] = {
PORT_DATA_SET,
TIME_PROPERTIES_DATA_SET
};
pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0, 0, 0);
if (!pmc) {
pr_err("failed to create pmc");
return -1;
}
while (i < N_ID) {
pollfd[0].fd = pmc_get_transport_fd(pmc);
pollfd[0].events = POLLIN|POLLPRI;
if (!ds_requested)
pollfd[0].events |= POLLOUT;
cnt = poll(pollfd, N_FD, 1000);
if (cnt < 0) {
pr_err("poll failed");
return -1;
}
if (!cnt) {
/* Request the data set again. */
ds_requested = 0;
pr_notice("Waiting for ptp4l...");
continue;
}
if (pollfd[0].revents & POLLOUT) {
pmc_send_get_action(pmc, ds_ids[i]);
ds_requested = 1;
}
if (!(pollfd[0].revents & (POLLIN|POLLPRI)))
continue;
msg = pmc_recv(pmc);
if (!msg)
continue;
if (!is_msg_mgt(msg) || get_mgt_id(msg) != ds_ids[i]) {
msg_put(msg);
continue;
}
data = get_mgt_data(msg);
ds_done = 0;
switch (get_mgt_id(msg)) {
case PORT_DATA_SET:
if (!wait_sync)
ds_done = 1;
switch (((struct portDS *)data)->portState) {
case PS_MASTER:
case PS_SLAVE:
ds_done = 1;
break;
}
break;
case TIME_PROPERTIES_DATA_SET:
*utc_offset = ((struct timePropertiesDS *)data)->
currentUtcOffset;
ds_done = 1;
break;
}
if (ds_done) {
/* Proceed with the next data set. */
i++;
ds_requested = 0;
}
msg_put(msg);
}
pmc_destroy(pmc);
return 0;
}
static void usage(char *progname)
{
fprintf(stderr,
"\n"
"usage: %s [options]\n\n"
" -c [dev|name] slave clock (CLOCK_REALTIME)\n"
" -d [dev] master PPS device\n"
" -s [dev|name] master clock\n"
" -i [iface] master clock by network interface\n"
" -P [kp] proportional constant (0.7)\n"
" -I [ki] integration constant (0.3)\n"
" -S [step] step threshold (disabled)\n"
" -R [rate] slave clock update rate in HZ (1)\n"
" -N [num] number of master clock readings per update (5)\n"
" -O [offset] slave-master time offset (0)\n"
" -w wait for ptp4l\n"
" -h prints this message and exits\n"
" -v prints the software version and exits\n"
"\n",
progname);
}
int main(int argc, char *argv[])
{
char *progname, *ethdev = NULL;
clockid_t src = CLOCK_INVALID;
int c, phc_readings = 5, phc_rate = 1, sync_offset = 0, pps_fd = -1;
int wait_sync = 0, forced_sync_offset = 0;
int print_level = LOG_INFO, use_syslog = 1, verbose = 0;
double ppb;
struct clock dst_clock = { .clkid = CLOCK_REALTIME };
configured_pi_kp = KP;
configured_pi_ki = KI;
/* Process the command line arguments. */
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv, "c:d:hs:P:I:S:R:N:O:i:wl:mqv"))) {
switch (c) {
case 'c':
dst_clock.clkid = clock_open(optarg);
break;
case 'd':
pps_fd = open(optarg, O_RDONLY);
if (pps_fd < 0) {
fprintf(stderr,
"cannot open '%s': %m\n", optarg);
return -1;
}
break;
case 's':
src = clock_open(optarg);
break;
case 'P':
configured_pi_kp = atof(optarg);
break;
case 'I':
configured_pi_ki = atof(optarg);
break;
case 'S':
configured_pi_offset = atof(optarg);
break;
case 'R':
phc_rate = atoi(optarg);
break;
case 'N':
phc_readings = atoi(optarg);
break;
case 'O':
sync_offset = atoi(optarg);
forced_sync_offset = 1;
break;
case 'i':
ethdev = optarg;
break;
case 'w':
wait_sync = 1;
break;
case 'l':
print_level = atoi(optarg);
break;
case 'm':
verbose = 1;
break;
case 'q':
use_syslog = 0;
break;
case 'v':
version_show(stdout);
return 0;
case 'h':
usage(progname);
return 0;
default:
usage(progname);
return -1;
}
}
if (src == CLOCK_INVALID && ethdev) {
struct sk_ts_info ts_info;
char phc_device[16];
if (sk_get_ts_info(ethdev, &ts_info) || !ts_info.valid) {
fprintf(stderr, "can't autodiscover PHC device\n");
return -1;
}
if (ts_info.phc_index < 0) {
fprintf(stderr, "interface %s doesn't have a PHC\n", ethdev);
return -1;
}
sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index);
src = clock_open(phc_device);
}
if (!(pps_fd >= 0 || src != CLOCK_INVALID) ||
dst_clock.clkid == CLOCK_INVALID ||
(pps_fd >= 0 && dst_clock.clkid != CLOCK_REALTIME)) {
usage(progname);
return -1;
}
print_set_progname(progname);
print_set_verbose(verbose);
print_set_syslog(use_syslog);
print_set_level(print_level);
if (wait_sync) {
int ptp_utc_offset;
run_pmc(wait_sync, &ptp_utc_offset);
if (!forced_sync_offset) {
if (src != CLOCK_REALTIME &&
dst_clock.clkid == CLOCK_REALTIME)
sync_offset = -ptp_utc_offset;
else if (src == CLOCK_REALTIME &&
dst_clock.clkid != CLOCK_REALTIME)
sync_offset = ptp_utc_offset;
}
}
ppb = clock_ppb_read(dst_clock.clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clock_ppb(dst_clock.clkid, ppb);
dst_clock.servo = servo_create(CLOCK_SERVO_PI, -ppb, max_ppb, 0);
if (pps_fd >= 0)
return do_pps_loop(&dst_clock, pps_fd, src,
phc_readings, sync_offset);
if (dst_clock.clkid == CLOCK_REALTIME &&
SYSOFF_SUPPORTED == sysoff_probe(CLOCKID_TO_FD(src), phc_readings))
return do_sysoff_loop(&dst_clock, src, phc_rate,
phc_readings, sync_offset);
return do_phc_loop(&dst_clock, src, phc_rate,
phc_readings, sync_offset);
}