linuxptp/config.c

789 lines
21 KiB
C

/**
* @file config.c
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "ether.h"
#include "print.h"
#include "util.h"
enum config_section {
GLOBAL_SECTION,
PORT_SECTION,
UNKNOWN_SECTION,
};
static enum parser_result parse_section_line(char *s, enum config_section *section)
{
if (!strcasecmp(s, "[global]")) {
*section = GLOBAL_SECTION;
} else if (s[0] == '[') {
char c;
*section = PORT_SECTION;
/* Replace square brackets with white space. */
while (0 != (c = *s)) {
if (c == '[' || c == ']')
*s = ' ';
s++;
}
} else
return NOT_PARSED;
return PARSED_OK;
}
static enum parser_result parse_pod_setting(const char *option,
const char *value,
struct port_defaults *pod)
{
int val;
unsigned int uval;
enum parser_result r;
if (!strcmp(option, "delayAsymmetry")) {
r = get_ranged_int(value, &val, INT_MIN, INT_MAX);
if (r != PARSED_OK)
return r;
pod->asymmetry = (Integer64) val << 16;
} else if (!strcmp(option, "logAnnounceInterval")) {
r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX);
if (r != PARSED_OK)
return r;
pod->logAnnounceInterval = val;
} else if (!strcmp(option, "logSyncInterval")) {
r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX);
if (r != PARSED_OK)
return r;
pod->logSyncInterval = val;
} else if (!strcmp(option, "logMinDelayReqInterval")) {
r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX);
if (r != PARSED_OK)
return r;
pod->logMinDelayReqInterval = val;
} else if (!strcmp(option, "logMinPdelayReqInterval")) {
r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX);
if (r != PARSED_OK)
return r;
pod->logMinPdelayReqInterval = val;
} else if (!strcmp(option, "announceReceiptTimeout")) {
r = get_ranged_uint(value, &uval, 2, UINT8_MAX);
if (r != PARSED_OK)
return r;
pod->announceReceiptTimeout = uval;
} else if (!strcmp(option, "syncReceiptTimeout")) {
r = get_ranged_uint(value, &uval, 0, UINT8_MAX);
if (r != PARSED_OK)
return r;
pod->syncReceiptTimeout = uval;
} else if (!strcmp(option, "transportSpecific")) {
r = get_ranged_uint(value, &uval, 0, 0x0F);
if (r != PARSED_OK)
return r;
pod->transportSpecific = uval << 4;
} else if (!strcmp(option, "path_trace_enabled")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
pod->path_trace_enabled = val;
} else if (!strcmp(option, "follow_up_info")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
pod->follow_up_info = val;
} else if (!strcmp(option, "neighborPropDelayThresh")) {
r = get_ranged_uint(value, &uval, 0, UINT32_MAX);
if (r != PARSED_OK)
return r;
pod->neighborPropDelayThresh = uval;
} else if (!strcmp(option, "min_neighbor_prop_delay")) {
r = get_ranged_int(value, &val, INT_MIN, -1);
if (r != PARSED_OK)
return r;
pod->min_neighbor_prop_delay = val;
} else if (!strcmp(option, "egressLatency")) {
r = get_ranged_int(value, &val, INT_MIN, INT_MAX);
if (r != PARSED_OK)
return r;
pod->tx_timestamp_offset = val;
} else if (!strcmp(option, "ingressLatency")) {
r = get_ranged_int(value, &val, INT_MIN, INT_MAX);
if (r != PARSED_OK)
return r;
pod->rx_timestamp_offset = val;
} else if (!strcmp(option, "fault_badpeernet_interval")) {
pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].type = FTMO_LINEAR_SECONDS;
if (!strcasecmp("ASAP", value)) {
pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = 0;
} else {
r = get_ranged_int(value, &val, INT32_MIN, INT32_MAX);
if (r != PARSED_OK)
return r;
pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = val;
}
} else if (!strcmp(option, "fault_reset_interval")) {
pod->flt_interval_pertype[FT_UNSPECIFIED].type = FTMO_LOG2_SECONDS;
if (!strcasecmp("ASAP", value)) {
pod->flt_interval_pertype[FT_UNSPECIFIED].val = FRI_ASAP;
} else {
r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX);
if (r != PARSED_OK)
return r;
pod->flt_interval_pertype[FT_UNSPECIFIED].val = val;
}
} else
return NOT_PARSED;
return PARSED_OK;
}
static enum parser_result parse_port_setting(const char *option,
const char *value,
struct interface *iface)
{
enum parser_result r;
int val;
r = parse_pod_setting(option, value, &iface->pod);
if (r != NOT_PARSED)
return r;
if (!strcmp(option, "network_transport")) {
if (!strcasecmp("L2", value))
iface->transport = TRANS_IEEE_802_3;
else if (!strcasecmp("UDPv4", value))
iface->transport = TRANS_UDP_IPV4;
else if (!strcasecmp("UDPv6", value))
iface->transport = TRANS_UDP_IPV6;
else
return BAD_VALUE;
} else if (!strcmp(option, "delay_mechanism")) {
if (!strcasecmp("Auto", value))
iface->dm = DM_AUTO;
else if (!strcasecmp("E2E", value))
iface->dm = DM_E2E;
else if (!strcasecmp("P2P", value))
iface->dm = DM_P2P;
else
return BAD_VALUE;
} else if (!strcmp(option, "delay_filter")) {
if (!strcasecmp("moving_average", value))
iface->delay_filter = FILTER_MOVING_AVERAGE;
else if (!strcasecmp("moving_median", value))
iface->delay_filter = FILTER_MOVING_MEDIAN;
else
return BAD_VALUE;
} else if (!strcmp(option, "delay_filter_length")) {
r = get_ranged_int(value, &val, 1, INT_MAX);
if (r != PARSED_OK)
return r;
iface->delay_filter_length = val;
} else if (!strcmp(option, "boundary_clock_jbod")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
iface->boundary_clock_jbod = val;
} else
return NOT_PARSED;
return PARSED_OK;
}
static int count_char(const char *str, char c)
{
int num = 0;
char s;
while ((s = *(str++))) {
if (s == c)
num++;
}
return num;
}
static enum parser_result parse_global_setting(const char *option,
const char *value,
struct config *cfg)
{
double df;
int i, val, cfg_ignore = cfg->cfg_ignore;
unsigned int uval;
unsigned char mac[MAC_LEN];
unsigned char oui[OUI_LEN];
struct defaultDS *dds = &cfg->dds.dds;
struct port_defaults *pod = &cfg->pod;
enum parser_result r;
r = parse_pod_setting(option, value, pod);
if (r != NOT_PARSED)
return r;
if (!strcmp(option, "twoStepFlag")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
if (val)
dds->flags |= DDS_TWO_STEP_FLAG;
else
dds->flags &= ~DDS_TWO_STEP_FLAG;
} else if (!strcmp(option, "slaveOnly")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY)) {
if (val)
dds->flags |= DDS_SLAVE_ONLY;
else
dds->flags &= ~DDS_SLAVE_ONLY;
}
} else if (!strcmp(option, "gmCapable")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
cfg->dds.grand_master_capable = val;
} else if (!strcmp(option, "priority1")) {
r = get_ranged_uint(value, &uval, 0, UINT8_MAX);
if (r != PARSED_OK)
return r;
dds->priority1 = uval;
} else if (!strcmp(option, "priority2")) {
r = get_ranged_uint(value, &uval, 0, UINT8_MAX);
if (r != PARSED_OK)
return r;
dds->priority2 = uval;
} else if (!strcmp(option, "domainNumber")) {
r = get_ranged_uint(value, &uval, 0, 127);
if (r != PARSED_OK)
return r;
dds->domainNumber = uval;
} else if (!strcmp(option, "clockClass")) {
r = get_ranged_uint(value, &uval, 0, UINT8_MAX);
if (r != PARSED_OK)
return r;
if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY))
dds->clockQuality.clockClass = uval;
} else if (!strcmp(option, "clockAccuracy")) {
r = get_ranged_uint(value, &uval, 0, UINT8_MAX);
if (r != PARSED_OK)
return r;
dds->clockQuality.clockAccuracy = uval;
} else if (!strcmp(option, "offsetScaledLogVariance")) {
r = get_ranged_uint(value, &uval, 0, UINT16_MAX);
if (r != PARSED_OK)
return r;
dds->clockQuality.offsetScaledLogVariance = uval;
} else if (!strcmp(option, "free_running")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
cfg->dds.free_running = val;
} else if (!strcmp(option, "freq_est_interval")) {
r = get_ranged_int(value, &val, 0, INT_MAX);
if (r != PARSED_OK)
return r;
cfg->dds.freq_est_interval = val;
pod->freq_est_interval = val;
} else if (!strcmp(option, "assume_two_step")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
*cfg->assume_two_step = val;
} else if (!strcmp(option, "tx_timestamp_timeout")) {
r = get_ranged_int(value, &val, 1, INT_MAX);
if (r != PARSED_OK)
return r;
*cfg->tx_timestamp_timeout = val;
} else if (!strcmp(option, "check_fup_sync")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
*cfg->check_fup_sync = val;
} else if (!strcmp(option, "pi_proportional_const")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_proportional_const = df;
} else if (!strcmp(option, "pi_integral_const")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_integral_const = df;
} else if (!strcmp(option, "pi_proportional_scale")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_proportional_scale = df;
} else if (!strcmp(option, "pi_proportional_exponent")) {
r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_proportional_exponent = df;
} else if (!strcmp(option, "pi_proportional_norm_max")) {
r = get_ranged_double(value, &df, DBL_MIN, 1.0);
if (r != PARSED_OK)
return r;
*cfg->pi_proportional_norm_max = df;
} else if (!strcmp(option, "pi_integral_scale")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_integral_scale = df;
} else if (!strcmp(option, "pi_integral_exponent")) {
r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->pi_integral_exponent = df;
} else if (!strcmp(option, "pi_integral_norm_max")) {
r = get_ranged_double(value, &df, DBL_MIN, 2.0);
if (r != PARSED_OK)
return r;
*cfg->pi_integral_norm_max = df;
} else if (!strcmp(option, "step_threshold")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->step_threshold = df;
} else if (!strcmp(option, "first_step_threshold")) {
r = get_ranged_double(value, &df, 0.0, DBL_MAX);
if (r != PARSED_OK)
return r;
*cfg->first_step_threshold = df;
} else if (!strcmp(option, "max_frequency")) {
r = get_ranged_int(value, &val, 0, INT_MAX);
if (r != PARSED_OK)
return r;
*cfg->max_frequency = val;
} else if (!strcmp(option, "sanity_freq_limit")) {
r = get_ranged_int(value, &val, 0, INT_MAX);
if (r != PARSED_OK)
return r;
cfg->dds.sanity_freq_limit = val;
} else if (!strcmp(option, "ntpshm_segment")) {
r = get_ranged_int(value, &val, INT_MIN, INT_MAX);
if (r != PARSED_OK)
return r;
*cfg->ntpshm_segment = val;
} else if (!strcmp(option, "ptp_dst_mac")) {
if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5]))
return BAD_VALUE;
for (i = 0; i < MAC_LEN; i++)
cfg->ptp_dst_mac[i] = mac[i];
} else if (!strcmp(option, "p2p_dst_mac")) {
if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5]))
return BAD_VALUE;
for (i = 0; i < MAC_LEN; i++)
cfg->p2p_dst_mac[i] = mac[i];
} else if (!strcmp(option, "udp6_scope")) {
r = get_ranged_uint(value, &uval, 0x00, 0x0F);
if (r != PARSED_OK)
return r;
*cfg->udp6_scope = uval;
} else if (!strcmp(option, "uds_address")) {
if (strlen(value) > MAX_IFNAME_SIZE)
return OUT_OF_RANGE;
strncpy(cfg->uds_address, value, MAX_IFNAME_SIZE);
} else if (!strcmp(option, "logging_level")) {
r = get_ranged_int(value, &val,
PRINT_LEVEL_MIN, PRINT_LEVEL_MAX);
if (r != PARSED_OK)
return r;
if (!(cfg_ignore & CFG_IGNORE_PRINT_LEVEL)) {
cfg->print_level = val;
}
} else if (!strcmp(option, "verbose")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
if (!(cfg_ignore & CFG_IGNORE_VERBOSE))
cfg->verbose = val;
} else if (!strcmp(option, "use_syslog")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
if (!(cfg_ignore & CFG_IGNORE_USE_SYSLOG))
cfg->use_syslog = val;
} else if (!strcmp(option, "time_stamping")) {
if (!(cfg_ignore & CFG_IGNORE_TIMESTAMPING)) {
if (0 == strcasecmp("hardware", value))
cfg->timestamping = TS_HARDWARE;
else if (0 == strcasecmp("software", value))
cfg->timestamping = TS_SOFTWARE;
else if (0 == strcasecmp("legacy", value))
cfg->timestamping = TS_LEGACY_HW;
else
return BAD_VALUE;
}
} else if (!strcmp(option, "delay_mechanism")) {
if (!(cfg_ignore & CFG_IGNORE_DM)) {
if (0 == strcasecmp("E2E", value))
cfg->dm = DM_E2E;
else if (0 == strcasecmp("P2P", value))
cfg->dm = DM_P2P;
else if (0 == strcasecmp("Auto", value))
cfg->dm = DM_AUTO;
else
return BAD_VALUE;
}
} else if (!strcmp(option, "network_transport")) {
if (!(cfg_ignore & CFG_IGNORE_TRANSPORT)) {
if (!strcasecmp("UDPv4", value))
cfg->transport = TRANS_UDP_IPV4;
else if (!strcasecmp("UDPv6", value))
cfg->transport = TRANS_UDP_IPV6;
else if (!strcasecmp("L2", value))
cfg->transport = TRANS_IEEE_802_3;
else
return BAD_VALUE;
}
} else if (!strcmp(option, "clock_servo")) {
if (!strcasecmp("pi", value))
cfg->clock_servo = CLOCK_SERVO_PI;
else if (!strcasecmp("linreg", value))
cfg->clock_servo = CLOCK_SERVO_LINREG;
else if (!strcasecmp("ntpshm", value))
cfg->clock_servo = CLOCK_SERVO_NTPSHM;
else
return BAD_VALUE;
} else if (!strcmp(option, "productDescription")) {
if (count_char(value, ';') != 2)
return BAD_VALUE;
if (static_ptp_text_set(&cfg->dds.clock_desc.productDescription, value) != 0)
return BAD_VALUE;
} else if (!strcmp(option, "revisionData")) {
if (count_char(value, ';') != 2)
return BAD_VALUE;
if (static_ptp_text_set(&cfg->dds.clock_desc.revisionData, value) != 0)
return BAD_VALUE;
} else if (!strcmp(option, "userDescription")) {
if (static_ptp_text_set(&cfg->dds.clock_desc.userDescription, value) != 0)
return BAD_VALUE;
} else if (!strcmp(option, "manufacturerIdentity")) {
if (OUI_LEN != sscanf(value, "%hhx:%hhx:%hhx",
&oui[0], &oui[1], &oui[2]))
return BAD_VALUE;
for (i = 0; i < OUI_LEN; i++)
cfg->dds.clock_desc.manufacturerIdentity[i] = oui[i];
} else if (!strcmp(option, "summary_interval")) {
r = get_ranged_int(value, &val, INT_MIN, INT_MAX);
if (r != PARSED_OK)
return r;
cfg->dds.stats_interval = val;
} else if (!strcmp(option, "kernel_leap")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
cfg->dds.kernel_leap = val;
} else if (!strcmp(option, "timeSource")) {
r = get_ranged_int(value, &val, 0x10, 0xfe);
if (r != PARSED_OK)
return r;
cfg->dds.time_source = val;
} else if (!strcmp(option, "delay_filter")) {
if (!strcasecmp("moving_average", value))
cfg->dds.delay_filter = FILTER_MOVING_AVERAGE;
else if (!strcasecmp("moving_median", value))
cfg->dds.delay_filter = FILTER_MOVING_MEDIAN;
else
return BAD_VALUE;
} else if (!strcmp(option, "delay_filter_length")) {
r = get_ranged_int(value, &val, 1, INT_MAX);
if (r != PARSED_OK)
return r;
cfg->dds.delay_filter_length = val;
} else if (!strcmp(option, "boundary_clock_jbod")) {
r = get_ranged_int(value, &val, 0, 1);
if (r != PARSED_OK)
return r;
cfg->dds.boundary_clock_jbod = val;
} else
return NOT_PARSED;
return PARSED_OK;
}
static enum parser_result parse_setting_line(char *line,
const char **option,
const char **value)
{
*option = line;
while (!isspace(line[0])) {
if (line[0] == '\0')
return NOT_PARSED;
line++;
}
while (isspace(line[0])) {
line[0] = '\0';
line++;
}
*value = line;
return PARSED_OK;
}
static void check_deprecated_options(const char **option)
{
const char *new_option = NULL;
if (!strcmp(*option, "pi_offset_const")) {
new_option = "step_threshold";
} else if (!strcmp(*option, "pi_f_offset_const")) {
new_option = "first_step_threshold";
} else if (!strcmp(*option, "pi_max_frequency")) {
new_option = "max_frequency";
}
if (new_option) {
fprintf(stderr, "option %s is deprecated, please use %s instead\n",
*option, new_option);
*option = new_option;
}
}
int config_read(char *name, struct config *cfg)
{
enum config_section current_section = UNKNOWN_SECTION;
enum parser_result parser_res;
FILE *fp;
char buf[1024], *line, *c;
const char *option, *value;
struct interface *current_port = NULL;
int line_num;
fp = 0 == strncmp(name, "-", 2) ? stdin : fopen(name, "r");
if (!fp) {
fprintf(stderr, "failed to open configuration file %s: %m\n", name);
return -1;
}
for (line_num = 1; fgets(buf, sizeof(buf), fp); line_num++) {
c = buf;
/* skip whitespace characters */
while (isspace(*c))
c++;
/* ignore empty lines and comments */
if (*c == '#' || *c == '\n' || *c == '\0')
continue;
line = c;
/* remove trailing whitespace characters and \n */
c += strlen(line) - 1;
while (c > line && (*c == '\n' || isspace(*c)))
*c-- = '\0';
if (parse_section_line(line, &current_section) == PARSED_OK) {
if (current_section == PORT_SECTION) {
char port[17];
if (1 != sscanf(line, " %16s", port)) {
fprintf(stderr, "could not parse port name on line %d\n",
line_num);
goto parse_error;
}
current_port = config_create_interface(port, cfg);
if (!current_port)
goto parse_error;
config_init_interface(current_port, cfg);
}
continue;
}
switch (current_section) {
case GLOBAL_SECTION:
case PORT_SECTION:
if (parse_setting_line(line, &option, &value)) {
fprintf(stderr, "could not parse line %d in %s section\n",
line_num,
current_section == GLOBAL_SECTION ?
"global" : current_port->name);
goto parse_error;
}
check_deprecated_options(&option);
if (current_section == GLOBAL_SECTION)
parser_res = parse_global_setting(option, value, cfg);
else
parser_res = parse_port_setting(option, value, current_port);
switch (parser_res) {
case PARSED_OK:
break;
case NOT_PARSED:
fprintf(stderr, "unknown option %s at line %d in %s section\n",
option, line_num,
current_section == GLOBAL_SECTION ?
"global" : current_port->name);
goto parse_error;
case BAD_VALUE:
fprintf(stderr, "%s is a bad value for option %s at line %d\n",
value, option, line_num);
goto parse_error;
case MALFORMED:
fprintf(stderr, "%s is a malformed value for option %s at line %d\n",
value, option, line_num);
goto parse_error;
case OUT_OF_RANGE:
fprintf(stderr, "%s is an out of range value for option %s at line %d\n",
value, option, line_num);
goto parse_error;
}
break;
case UNKNOWN_SECTION:
fprintf(stderr, "line %d is not in a section\n", line_num);
goto parse_error;
default:
continue;
}
}
fclose(fp);
return 0;
parse_error:
fprintf(stderr, "failed to parse configuration file %s\n", name);
fclose(fp);
return -2;
}
struct interface *config_create_interface(char *name, struct config *cfg)
{
struct interface *iface;
/* only create each interface once (by name) */
STAILQ_FOREACH(iface, &cfg->interfaces, list) {
if (0 == strncmp(name, iface->name, MAX_IFNAME_SIZE))
return iface;
}
iface = calloc(1, sizeof(struct interface));
if (!iface) {
fprintf(stderr, "cannot allocate memory for a port\n");
return NULL;
}
strncpy(iface->name, name, MAX_IFNAME_SIZE);
STAILQ_INSERT_TAIL(&cfg->interfaces, iface, list);
return iface;
}
void config_init_interface(struct interface *iface, struct config *cfg)
{
iface->dm = cfg->dm;
iface->transport = cfg->transport;
memcpy(&iface->pod, &cfg->pod, sizeof(cfg->pod));
sk_get_ts_info(iface->name, &iface->ts_info);
iface->delay_filter = cfg->dds.delay_filter;
iface->delay_filter_length = cfg->dds.delay_filter_length;
iface->boundary_clock_jbod = cfg->dds.boundary_clock_jbod;
}
void config_destroy(struct config *cfg)
{
struct interface *iface;
while ((iface = STAILQ_FIRST(&cfg->interfaces))) {
STAILQ_REMOVE_HEAD(&cfg->interfaces, list);
free(iface);
}
}