linuxptp/pi.c

155 lines
3.5 KiB
C

/**
* @file pi.c
* @brief Implements a Proportional Integral clock servo.
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include "pi.h"
#include "servo_private.h"
#define HWTS_KP 0.7
#define HWTS_KI 0.3
#define SWTS_KP 0.1
#define SWTS_KI 0.001
#define NSEC_PER_SEC 1000000000
/* These two take their values from the configuration file. (see ptp4l.c) */
double configured_pi_kp = 0.0;
double configured_pi_ki = 0.0;
double configured_pi_offset = 0.0;
struct pi_servo {
struct servo servo;
int64_t offset[2];
uint64_t local[2];
double drift;
double maxppb;
double kp;
double ki;
double max_offset;
int count;
};
static void pi_destroy(struct servo *servo)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
free(s);
}
static double pi_sample(struct servo *servo,
int64_t offset,
uint64_t local_ts,
enum servo_state *state)
{
double ki_term, ppb = 0.0;
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
switch (s->count) {
case 0:
s->offset[0] = offset;
s->local[0] = local_ts;
*state = SERVO_UNLOCKED;
s->count = 1;
break;
case 1:
s->offset[1] = offset;
s->local[1] = local_ts;
*state = SERVO_UNLOCKED;
s->count = 2;
break;
case 2:
s->drift += (s->offset[1] - s->offset[0]) * 1e9 /
(s->local[1] - s->local[0]);
if (s->drift < -s->maxppb)
s->drift = -s->maxppb;
else if (s->drift > s->maxppb)
s->drift = s->maxppb;
*state = SERVO_UNLOCKED;
s->count = 3;
break;
case 3:
*state = SERVO_JUMP;
ppb = s->drift;
s->count = 4;
break;
case 4:
/*
* reset the clock servo when offset is greater than the max
* offset value. Note that the clock jump will be performed in
* step 3, so it is not necessary to have clock jump
* immediately. This allows re-calculating drift as in initial
* clock startup.
*/
if (s->max_offset && (s->max_offset < fabs(offset))) {
*state = SERVO_UNLOCKED;
s->count = 0;
break;
}
ki_term = s->ki * offset;
ppb = s->kp * offset + s->drift + ki_term;
if (ppb < -s->maxppb) {
ppb = -s->maxppb;
} else if (ppb > s->maxppb) {
ppb = s->maxppb;
} else {
s->drift += ki_term;
}
*state = SERVO_LOCKED;
break;
}
return ppb;
}
struct servo *pi_servo_create(int fadj, int max_ppb, int sw_ts)
{
struct pi_servo *s;
s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->servo.destroy = pi_destroy;
s->servo.sample = pi_sample;
s->drift = fadj;
s->maxppb = max_ppb;
if (configured_pi_kp && configured_pi_ki) {
s->kp = configured_pi_kp;
s->ki = configured_pi_ki;
} else if (sw_ts) {
s->kp = SWTS_KP;
s->ki = SWTS_KI;
} else {
s->kp = HWTS_KP;
s->ki = HWTS_KI;
}
if (configured_pi_offset > 0.0) {
s->max_offset = configured_pi_offset * NSEC_PER_SEC;
} else {
s->max_offset = 0.0;
}
return &s->servo;
}