3014 lines
74 KiB
C
3014 lines
74 KiB
C
/**
|
|
* @file port.c
|
|
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
#include <arpa/inet.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/queue.h>
|
|
#include <net/if.h>
|
|
|
|
#include "bmc.h"
|
|
#include "clock.h"
|
|
#include "filter.h"
|
|
#include "missing.h"
|
|
#include "msg.h"
|
|
#include "phc.h"
|
|
#include "port.h"
|
|
#include "port_private.h"
|
|
#include "print.h"
|
|
#include "rtnl.h"
|
|
#include "sk.h"
|
|
#include "tc.h"
|
|
#include "tlv.h"
|
|
#include "tmv.h"
|
|
#include "tsproc.h"
|
|
#include "unicast_client.h"
|
|
#include "unicast_service.h"
|
|
#include "util.h"
|
|
|
|
#define ALLOWED_LOST_RESPONSES 3
|
|
#define ANNOUNCE_SPAN 1
|
|
|
|
enum syfu_event {
|
|
SYNC_MISMATCH,
|
|
SYNC_MATCH,
|
|
FUP_MISMATCH,
|
|
FUP_MATCH,
|
|
};
|
|
|
|
static int port_capable(struct port *p);
|
|
static int port_is_ieee8021as(struct port *p);
|
|
static void port_nrate_initialize(struct port *p);
|
|
|
|
static int announce_compare(struct ptp_message *m1, struct ptp_message *m2)
|
|
{
|
|
struct announce_msg *a = &m1->announce, *b = &m2->announce;
|
|
int len =
|
|
sizeof(a->grandmasterPriority1) +
|
|
sizeof(a->grandmasterClockQuality) +
|
|
sizeof(a->grandmasterPriority2) +
|
|
sizeof(a->grandmasterIdentity) +
|
|
sizeof(a->stepsRemoved);
|
|
|
|
return memcmp(&a->grandmasterPriority1, &b->grandmasterPriority1, len);
|
|
}
|
|
|
|
static void announce_to_dataset(struct ptp_message *m, struct port *p,
|
|
struct dataset *out)
|
|
{
|
|
struct announce_msg *a = &m->announce;
|
|
out->priority1 = a->grandmasterPriority1;
|
|
out->identity = a->grandmasterIdentity;
|
|
out->quality = a->grandmasterClockQuality;
|
|
out->priority2 = a->grandmasterPriority2;
|
|
out->localPriority = p->localPriority;
|
|
out->stepsRemoved = a->stepsRemoved;
|
|
out->sender = m->header.sourcePortIdentity;
|
|
out->receiver = p->portIdentity;
|
|
}
|
|
|
|
int clear_fault_asap(struct fault_interval *faint)
|
|
{
|
|
switch (faint->type) {
|
|
case FTMO_LINEAR_SECONDS:
|
|
return faint->val == 0 ? 1 : 0;
|
|
case FTMO_LOG2_SECONDS:
|
|
return faint->val == FRI_ASAP ? 1 : 0;
|
|
case FTMO_CNT:
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void extract_address(struct ptp_message *m, struct PortAddress *paddr)
|
|
{
|
|
int len = 0;
|
|
|
|
switch (paddr->networkProtocol) {
|
|
case TRANS_UDP_IPV4:
|
|
len = sizeof(m->address.sin.sin_addr.s_addr);
|
|
memcpy(paddr->address, &m->address.sin.sin_addr.s_addr, len);
|
|
break;
|
|
case TRANS_UDP_IPV6:
|
|
len = sizeof(m->address.sin6.sin6_addr.s6_addr);
|
|
memcpy(paddr->address, &m->address.sin6.sin6_addr.s6_addr, len);
|
|
break;
|
|
case TRANS_IEEE_802_3:
|
|
len = MAC_LEN;
|
|
memcpy(paddr->address, &m->address.sll.sll_addr, len);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
paddr->addressLength = len;
|
|
}
|
|
|
|
static int msg_current(struct ptp_message *m, struct timespec now)
|
|
{
|
|
int64_t t1, t2, tmo;
|
|
|
|
t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec;
|
|
t2 = now.tv_sec * NSEC2SEC + now.tv_nsec;
|
|
|
|
if (m->header.logMessageInterval < -63) {
|
|
tmo = 0;
|
|
} else if (m->header.logMessageInterval > 31) {
|
|
tmo = INT64_MAX;
|
|
} else if (m->header.logMessageInterval < 0) {
|
|
tmo = 4LL * NSEC2SEC / (1 << -m->header.logMessageInterval);
|
|
} else {
|
|
tmo = 4LL * (1 << m->header.logMessageInterval) * NSEC2SEC;
|
|
}
|
|
|
|
return t2 - t1 < tmo;
|
|
}
|
|
|
|
static int msg_source_equal(struct ptp_message *m1, struct foreign_clock *fc)
|
|
{
|
|
struct PortIdentity *id1, *id2;
|
|
|
|
if (!fc) {
|
|
return 0;
|
|
}
|
|
|
|
id1 = &m1->header.sourcePortIdentity;
|
|
id2 = &fc->dataset.sender;
|
|
return 0 == memcmp(id1, id2, sizeof(*id1));
|
|
}
|
|
|
|
int source_pid_eq(struct ptp_message *m1, struct ptp_message *m2)
|
|
{
|
|
return pid_eq(&m1->header.sourcePortIdentity,
|
|
&m2->header.sourcePortIdentity);
|
|
}
|
|
|
|
enum fault_type last_fault_type(struct port *port)
|
|
{
|
|
return port->last_fault_type;
|
|
}
|
|
|
|
void fault_interval(struct port *port, enum fault_type ft,
|
|
struct fault_interval *i)
|
|
{
|
|
i->type = port->flt_interval_pertype[ft].type;
|
|
i->val = port->flt_interval_pertype[ft].val;
|
|
}
|
|
|
|
int port_fault_fd(struct port *port)
|
|
{
|
|
return port->fault_fd;
|
|
}
|
|
|
|
struct fdarray *port_fda(struct port *port)
|
|
{
|
|
return &port->fda;
|
|
}
|
|
|
|
int set_tmo_log(int fd, unsigned int scale, int log_seconds)
|
|
{
|
|
struct itimerspec tmo = {
|
|
{0, 0}, {0, 0}
|
|
};
|
|
uint64_t ns;
|
|
int i;
|
|
|
|
if (log_seconds < 0) {
|
|
|
|
log_seconds *= -1;
|
|
for (i = 1, ns = scale * 500000000ULL; i < log_seconds; i++) {
|
|
ns >>= 1;
|
|
}
|
|
tmo.it_value.tv_nsec = ns;
|
|
|
|
while (tmo.it_value.tv_nsec >= NS_PER_SEC) {
|
|
tmo.it_value.tv_nsec -= NS_PER_SEC;
|
|
tmo.it_value.tv_sec++;
|
|
}
|
|
|
|
} else
|
|
tmo.it_value.tv_sec = scale * (1 << log_seconds);
|
|
|
|
return timerfd_settime(fd, 0, &tmo, NULL);
|
|
}
|
|
|
|
int set_tmo_lin(int fd, int seconds)
|
|
{
|
|
struct itimerspec tmo = {
|
|
{0, 0}, {0, 0}
|
|
};
|
|
|
|
tmo.it_value.tv_sec = seconds;
|
|
return timerfd_settime(fd, 0, &tmo, NULL);
|
|
}
|
|
|
|
int set_tmo_random(int fd, int min, int span, int log_seconds)
|
|
{
|
|
uint64_t value_ns, min_ns, span_ns;
|
|
struct itimerspec tmo = {
|
|
{0, 0}, {0, 0}
|
|
};
|
|
|
|
if (log_seconds >= 0) {
|
|
min_ns = min * NS_PER_SEC << log_seconds;
|
|
span_ns = span * NS_PER_SEC << log_seconds;
|
|
} else {
|
|
min_ns = min * NS_PER_SEC >> -log_seconds;
|
|
span_ns = span * NS_PER_SEC >> -log_seconds;
|
|
}
|
|
|
|
value_ns = min_ns + (span_ns * (random() % (1 << 15) + 1) >> 15);
|
|
|
|
tmo.it_value.tv_sec = value_ns / NS_PER_SEC;
|
|
tmo.it_value.tv_nsec = value_ns % NS_PER_SEC;
|
|
|
|
return timerfd_settime(fd, 0, &tmo, NULL);
|
|
}
|
|
|
|
int port_set_fault_timer_log(struct port *port,
|
|
unsigned int scale, int log_seconds)
|
|
{
|
|
return set_tmo_log(port->fault_fd, scale, log_seconds);
|
|
}
|
|
|
|
int port_set_fault_timer_lin(struct port *port, int seconds)
|
|
{
|
|
return set_tmo_lin(port->fault_fd, seconds);
|
|
}
|
|
|
|
void fc_clear(struct foreign_clock *fc)
|
|
{
|
|
struct ptp_message *m;
|
|
|
|
while (fc->n_messages) {
|
|
m = TAILQ_LAST(&fc->messages, messages);
|
|
TAILQ_REMOVE(&fc->messages, m, list);
|
|
fc->n_messages--;
|
|
msg_put(m);
|
|
}
|
|
}
|
|
|
|
static void fc_prune(struct foreign_clock *fc)
|
|
{
|
|
struct timespec now;
|
|
struct ptp_message *m;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &now);
|
|
|
|
while (fc->n_messages > FOREIGN_MASTER_THRESHOLD) {
|
|
m = TAILQ_LAST(&fc->messages, messages);
|
|
TAILQ_REMOVE(&fc->messages, m, list);
|
|
fc->n_messages--;
|
|
msg_put(m);
|
|
}
|
|
|
|
while (!TAILQ_EMPTY(&fc->messages)) {
|
|
m = TAILQ_LAST(&fc->messages, messages);
|
|
if (msg_current(m, now))
|
|
break;
|
|
TAILQ_REMOVE(&fc->messages, m, list);
|
|
fc->n_messages--;
|
|
msg_put(m);
|
|
}
|
|
}
|
|
|
|
static int delay_req_current(struct ptp_message *m, struct timespec now)
|
|
{
|
|
int64_t t1, t2, tmo = 5 * NSEC2SEC;
|
|
|
|
t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec;
|
|
t2 = now.tv_sec * NSEC2SEC + now.tv_nsec;
|
|
|
|
return t2 - t1 < tmo;
|
|
}
|
|
|
|
void delay_req_prune(struct port *p)
|
|
{
|
|
struct timespec now;
|
|
struct ptp_message *m;
|
|
clock_gettime(CLOCK_MONOTONIC, &now);
|
|
|
|
while (!TAILQ_EMPTY(&p->delay_req)) {
|
|
m = TAILQ_LAST(&p->delay_req, delay_req);
|
|
if (delay_req_current(m, now)) {
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&p->delay_req, m, list);
|
|
msg_put(m);
|
|
}
|
|
}
|
|
|
|
void ts_add(tmv_t *ts, Integer64 correction)
|
|
{
|
|
if (!correction) {
|
|
return;
|
|
}
|
|
*ts = tmv_add(*ts, correction_to_tmv(correction));
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if the announce message is different than last.
|
|
*/
|
|
static int add_foreign_master(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct foreign_clock *fc;
|
|
struct ptp_message *tmp;
|
|
int broke_threshold = 0, diff = 0;
|
|
|
|
LIST_FOREACH(fc, &p->foreign_masters, list) {
|
|
if (msg_source_equal(m, fc)) {
|
|
break;
|
|
}
|
|
}
|
|
if (!fc) {
|
|
pr_notice("port %hu: new foreign master %s", portnum(p),
|
|
pid2str(&m->header.sourcePortIdentity));
|
|
|
|
fc = malloc(sizeof(*fc));
|
|
if (!fc) {
|
|
pr_err("low memory, failed to add foreign master");
|
|
return 0;
|
|
}
|
|
memset(fc, 0, sizeof(*fc));
|
|
TAILQ_INIT(&fc->messages);
|
|
LIST_INSERT_HEAD(&p->foreign_masters, fc, list);
|
|
fc->port = p;
|
|
fc->dataset.sender = m->header.sourcePortIdentity;
|
|
/* We do not count this first message, see 9.5.3(b) */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If this message breaks the threshold, that is an important change.
|
|
*/
|
|
fc_prune(fc);
|
|
if (FOREIGN_MASTER_THRESHOLD - 1 == fc->n_messages) {
|
|
broke_threshold = 1;
|
|
}
|
|
|
|
/*
|
|
* Okay, go ahead and add this announcement.
|
|
*/
|
|
msg_get(m);
|
|
fc->n_messages++;
|
|
TAILQ_INSERT_HEAD(&fc->messages, m, list);
|
|
|
|
/*
|
|
* Test if this announcement contains changed information.
|
|
*/
|
|
if (fc->n_messages > 1) {
|
|
tmp = TAILQ_NEXT(m, list);
|
|
diff = announce_compare(m, tmp);
|
|
}
|
|
|
|
return broke_threshold || diff;
|
|
}
|
|
|
|
static int follow_up_info_append(struct ptp_message *m)
|
|
{
|
|
struct follow_up_info_tlv *fui;
|
|
struct tlv_extra *extra;
|
|
|
|
extra = msg_tlv_append(m, sizeof(*fui));
|
|
if (!extra) {
|
|
return -1;
|
|
}
|
|
fui = (struct follow_up_info_tlv *) extra->tlv;
|
|
fui->type = TLV_ORGANIZATION_EXTENSION;
|
|
fui->length = sizeof(*fui) - sizeof(fui->type) - sizeof(fui->length);
|
|
memcpy(fui->id, ieee8021_id, sizeof(ieee8021_id));
|
|
fui->subtype[2] = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int net_sync_resp_append(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct timePropertiesDS *tp = clock_time_properties(p->clock);
|
|
struct ClockIdentity cid = clock_identity(p->clock), pid;
|
|
struct currentDS *cds = clock_current_dataset(p->clock);
|
|
struct parent_ds *dad = clock_parent_ds(p->clock);
|
|
struct port *best = clock_best_port(p->clock);
|
|
struct nsm_resp_tlv_head *head;
|
|
struct Timestamp last_sync;
|
|
struct PortAddress *paddr;
|
|
struct ptp_message *tmp;
|
|
struct tlv_extra *extra;
|
|
unsigned char *ptr;
|
|
int tlv_len;
|
|
|
|
uint8_t buf[sizeof(*paddr) + sizeof(struct sockaddr_storage)];
|
|
|
|
last_sync = tmv_to_Timestamp(clock_ingress_time(p->clock));
|
|
pid = dad->pds.parentPortIdentity.clockIdentity;
|
|
paddr = (struct PortAddress *)buf;
|
|
|
|
if (best && !cid_eq(&cid, &pid)) {
|
|
/* Extract the parent's protocol address. */
|
|
paddr->networkProtocol = transport_type(best->trp);
|
|
paddr->addressLength =
|
|
transport_protocol_addr(best->trp, paddr->address);
|
|
if (best->best) {
|
|
tmp = TAILQ_FIRST(&best->best->messages);
|
|
extract_address(tmp, paddr);
|
|
}
|
|
} else {
|
|
/* We are our own parent. */
|
|
paddr->networkProtocol = transport_type(p->trp);
|
|
paddr->addressLength =
|
|
transport_protocol_addr(p->trp, paddr->address);
|
|
}
|
|
|
|
tlv_len = sizeof(*head) + sizeof(*extra->foot) + paddr->addressLength;
|
|
|
|
extra = msg_tlv_append(m, tlv_len);
|
|
if (!extra) {
|
|
return -1;
|
|
}
|
|
|
|
head = (struct nsm_resp_tlv_head *) extra->tlv;
|
|
head->type = TLV_PTPMON_RESP;
|
|
head->length = tlv_len - sizeof(head->type) - sizeof(head->length);
|
|
head->port_state = p->state == PS_GRAND_MASTER ? PS_MASTER : p->state;
|
|
head->parent_addr.networkProtocol = paddr->networkProtocol;
|
|
head->parent_addr.addressLength = paddr->addressLength;
|
|
memcpy(head->parent_addr.address, paddr->address, paddr->addressLength);
|
|
|
|
ptr = (unsigned char *) head;
|
|
ptr += sizeof(*head) + paddr->addressLength;
|
|
extra->foot = (struct nsm_resp_tlv_foot *) ptr;
|
|
|
|
memcpy(&extra->foot->parent, &dad->pds, sizeof(extra->foot->parent));
|
|
memcpy(&extra->foot->current, cds, sizeof(extra->foot->current));
|
|
memcpy(&extra->foot->timeprop, tp, sizeof(extra->foot->timeprop));
|
|
memcpy(&extra->foot->lastsync, &last_sync, sizeof(extra->foot->lastsync));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct follow_up_info_tlv *follow_up_info_extract(struct ptp_message *m)
|
|
{
|
|
struct follow_up_info_tlv *f;
|
|
struct tlv_extra *extra;
|
|
|
|
TAILQ_FOREACH(extra, &m->tlv_list, list) {
|
|
f = (struct follow_up_info_tlv *) extra->tlv;
|
|
if (f->type == TLV_ORGANIZATION_EXTENSION &&
|
|
f->length == sizeof(*f) - sizeof(f->type) - sizeof(f->length) &&
|
|
// memcmp(f->id, ieee8021_id, sizeof(ieee8021_id)) &&
|
|
!f->subtype[0] && !f->subtype[1] && f->subtype[2] == 1) {
|
|
return f;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void free_foreign_masters(struct port *p)
|
|
{
|
|
struct foreign_clock *fc;
|
|
while ((fc = LIST_FIRST(&p->foreign_masters)) != NULL) {
|
|
LIST_REMOVE(fc, list);
|
|
fc_clear(fc);
|
|
free(fc);
|
|
}
|
|
}
|
|
|
|
static int fup_sync_ok(struct ptp_message *fup, struct ptp_message *sync)
|
|
{
|
|
/*
|
|
* NB - If the sk_check_fupsync option is not enabled, then
|
|
* both of these time stamps will be zero.
|
|
*/
|
|
if (tmv_cmp(fup->hwts.sw, sync->hwts.sw) < 0) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int incapable_ignore(struct port *p, struct ptp_message *m)
|
|
{
|
|
if (port_capable(p)) {
|
|
return 0;
|
|
}
|
|
if (msg_type(m) == ANNOUNCE || msg_type(m) == SYNC) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int path_trace_append(struct port *p, struct ptp_message *m,
|
|
struct parent_ds *dad)
|
|
{
|
|
int length = 1 + dad->path_length, ptt_len, tlv_len;
|
|
struct path_trace_tlv *ptt;
|
|
struct tlv_extra *extra;
|
|
|
|
if (length > PATH_TRACE_MAX) {
|
|
return -1;
|
|
}
|
|
|
|
ptt_len = length * sizeof(struct ClockIdentity);
|
|
tlv_len = ptt_len + sizeof(ptt->type) + sizeof(ptt->length);
|
|
|
|
extra = msg_tlv_append(m, tlv_len);
|
|
if (!extra) {
|
|
return -1;
|
|
}
|
|
ptt = (struct path_trace_tlv *) extra->tlv;
|
|
ptt->type = TLV_PATH_TRACE;
|
|
ptt->length = ptt_len;
|
|
memcpy(ptt->cid, dad->ptl, ptt->length);
|
|
ptt->cid[length - 1] = clock_identity(p->clock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int path_trace_ignore(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct path_trace_tlv *ptt;
|
|
struct ClockIdentity cid;
|
|
struct tlv_extra *extra;
|
|
int i, cnt;
|
|
|
|
if (!p->path_trace_enabled) {
|
|
return 0;
|
|
}
|
|
if (msg_type(m) != ANNOUNCE) {
|
|
return 0;
|
|
}
|
|
TAILQ_FOREACH(extra, &m->tlv_list, list) {
|
|
ptt = (struct path_trace_tlv *) extra->tlv;
|
|
if (ptt->type != TLV_PATH_TRACE) {
|
|
continue;
|
|
}
|
|
cnt = path_length(ptt);
|
|
cid = clock_identity(p->clock);
|
|
for (i = 0; i < cnt; i++) {
|
|
if (cid_eq(&ptt->cid[i], &cid)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int peer_prepare_and_send(struct port *p, struct ptp_message *msg,
|
|
enum transport_event event)
|
|
{
|
|
int cnt;
|
|
if (msg_pre_send(msg)) {
|
|
return -1;
|
|
}
|
|
if (msg_unicast(msg)) {
|
|
cnt = transport_sendto(p->trp, &p->fda, event, msg);
|
|
} else {
|
|
cnt = transport_peer(p->trp, &p->fda, event, msg);
|
|
}
|
|
if (cnt <= 0) {
|
|
return -1;
|
|
}
|
|
if (msg_sots_valid(msg)) {
|
|
ts_add(&msg->hwts.ts, p->tx_timestamp_offset);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int port_capable(struct port *p)
|
|
{
|
|
if (!port_is_ieee8021as(p)) {
|
|
/* Normal 1588 ports are always capable. */
|
|
goto capable;
|
|
}
|
|
|
|
if (tmv_to_nanoseconds(p->peer_delay) > p->neighborPropDelayThresh) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: peer_delay (%" PRId64 ") > neighborPropDelayThresh "
|
|
"(%" PRId32 "), resetting asCapable", portnum(p),
|
|
tmv_to_nanoseconds(p->peer_delay),
|
|
p->neighborPropDelayThresh);
|
|
goto not_capable;
|
|
}
|
|
|
|
if (tmv_to_nanoseconds(p->peer_delay) < p->min_neighbor_prop_delay) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: peer_delay (%" PRId64 ") < min_neighbor_prop_delay "
|
|
"(%" PRId32 "), resetting asCapable", portnum(p),
|
|
tmv_to_nanoseconds(p->peer_delay),
|
|
p->min_neighbor_prop_delay);
|
|
goto not_capable;
|
|
}
|
|
|
|
if (p->pdr_missing > ALLOWED_LOST_RESPONSES) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: missed %d peer delay resp, "
|
|
"resetting asCapable", portnum(p), p->pdr_missing);
|
|
goto not_capable;
|
|
}
|
|
|
|
if (p->multiple_seq_pdr_count) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: multiple sequential peer delay resp, "
|
|
"resetting asCapable", portnum(p));
|
|
goto not_capable;
|
|
}
|
|
|
|
if (!p->peer_portid_valid) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: invalid peer port id, "
|
|
"resetting asCapable", portnum(p));
|
|
goto not_capable;
|
|
}
|
|
|
|
if (!p->nrate.ratio_valid) {
|
|
if (p->asCapable)
|
|
pr_debug("port %hu: invalid nrate, "
|
|
"resetting asCapable", portnum(p));
|
|
goto not_capable;
|
|
}
|
|
|
|
capable:
|
|
if (!p->asCapable)
|
|
pr_debug("port %hu: setting asCapable", portnum(p));
|
|
p->asCapable = 1;
|
|
return 1;
|
|
|
|
not_capable:
|
|
if (p->asCapable)
|
|
port_nrate_initialize(p);
|
|
p->asCapable = 0;
|
|
return 0;
|
|
}
|
|
|
|
int port_clr_tmo(int fd)
|
|
{
|
|
struct itimerspec tmo = {
|
|
{0, 0}, {0, 0}
|
|
};
|
|
return timerfd_settime(fd, 0, &tmo, NULL);
|
|
}
|
|
|
|
static int port_ignore(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct ClockIdentity c1, c2;
|
|
|
|
if (incapable_ignore(p, m)) {
|
|
return 1;
|
|
}
|
|
if (path_trace_ignore(p, m)) {
|
|
return 1;
|
|
}
|
|
if (p->match_transport_specific &&
|
|
msg_transport_specific(m) != p->transportSpecific) {
|
|
return 1;
|
|
}
|
|
if (pid_eq(&m->header.sourcePortIdentity, &p->portIdentity)) {
|
|
return 1;
|
|
}
|
|
if (m->header.domainNumber != clock_domain_number(p->clock)) {
|
|
return 1;
|
|
}
|
|
|
|
c1 = clock_identity(p->clock);
|
|
c2 = m->header.sourcePortIdentity.clockIdentity;
|
|
|
|
if (cid_eq(&c1, &c2)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int port_nsm_reply(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct tlv_extra *extra;
|
|
|
|
if (!p->net_sync_monitor) {
|
|
return 0;
|
|
}
|
|
if (!p->hybrid_e2e) {
|
|
return 0;
|
|
}
|
|
if (!msg_unicast(m)) {
|
|
return 0;
|
|
}
|
|
TAILQ_FOREACH(extra, &m->tlv_list, list) {
|
|
if (extra->tlv->type == TLV_PTPMON_REQ) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test whether a 802.1AS port may transmit a sync message.
|
|
*/
|
|
static int port_sync_incapable(struct port *p)
|
|
{
|
|
struct ClockIdentity cid;
|
|
struct PortIdentity pid;
|
|
|
|
if (!port_is_ieee8021as(p)) {
|
|
return 0;
|
|
}
|
|
if (clock_gm_capable(p->clock)) {
|
|
return 0;
|
|
}
|
|
cid = clock_identity(p->clock);
|
|
pid = clock_parent_identity(p->clock);
|
|
if (cid_eq(&cid, &pid.clockIdentity)) {
|
|
/*
|
|
* We are the GM, but without gmCapable set.
|
|
*/
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int port_is_ieee8021as(struct port *p)
|
|
{
|
|
return p->follow_up_info ? 1 : 0;
|
|
}
|
|
|
|
static void port_management_send_error(struct port *p, struct port *ingress,
|
|
struct ptp_message *msg, int error_id)
|
|
{
|
|
if (port_management_error(p->portIdentity, ingress, msg, error_id))
|
|
pr_err("port %hu: management error failed", portnum(p));
|
|
}
|
|
|
|
static const Octet profile_id_drr[] = {0x00, 0x1B, 0x19, 0x00, 0x01, 0x00};
|
|
static const Octet profile_id_p2p[] = {0x00, 0x1B, 0x19, 0x00, 0x02, 0x00};
|
|
|
|
static int port_management_fill_response(struct port *target,
|
|
struct ptp_message *rsp, int id)
|
|
{
|
|
struct mgmt_clock_description *cd;
|
|
struct management_tlv_datum *mtd;
|
|
struct clock_description *desc;
|
|
struct port_properties_np *ppn;
|
|
struct management_tlv *tlv;
|
|
struct port_ds_np *pdsnp;
|
|
struct tlv_extra *extra;
|
|
struct portDS *pds;
|
|
uint16_t u16;
|
|
uint8_t *buf;
|
|
int datalen;
|
|
|
|
extra = tlv_extra_alloc();
|
|
if (!extra) {
|
|
pr_err("failed to allocate TLV descriptor");
|
|
return 0;
|
|
}
|
|
extra->tlv = (struct TLV *) rsp->management.suffix;
|
|
|
|
tlv = (struct management_tlv *) rsp->management.suffix;
|
|
tlv->type = TLV_MANAGEMENT;
|
|
tlv->id = id;
|
|
|
|
switch (id) {
|
|
case TLV_NULL_MANAGEMENT:
|
|
datalen = 0;
|
|
break;
|
|
case TLV_CLOCK_DESCRIPTION:
|
|
cd = &extra->cd;
|
|
buf = tlv->data;
|
|
cd->clockType = (UInteger16 *) buf;
|
|
buf += sizeof(*cd->clockType);
|
|
*cd->clockType = clock_type(target->clock);
|
|
cd->physicalLayerProtocol = (struct PTPText *) buf;
|
|
switch(transport_type(target->trp)) {
|
|
case TRANS_UDP_IPV4:
|
|
case TRANS_UDP_IPV6:
|
|
case TRANS_IEEE_802_3:
|
|
ptp_text_set(cd->physicalLayerProtocol, "IEEE 802.3");
|
|
break;
|
|
default:
|
|
ptp_text_set(cd->physicalLayerProtocol, NULL);
|
|
break;
|
|
}
|
|
buf += sizeof(struct PTPText) + cd->physicalLayerProtocol->length;
|
|
|
|
cd->physicalAddress = (struct PhysicalAddress *) buf;
|
|
u16 = transport_physical_addr(target->trp,
|
|
cd->physicalAddress->address);
|
|
memcpy(&cd->physicalAddress->length, &u16, 2);
|
|
buf += sizeof(struct PhysicalAddress) + u16;
|
|
|
|
cd->protocolAddress = (struct PortAddress *) buf;
|
|
u16 = transport_type(target->trp);
|
|
memcpy(&cd->protocolAddress->networkProtocol, &u16, 2);
|
|
u16 = transport_protocol_addr(target->trp,
|
|
cd->protocolAddress->address);
|
|
memcpy(&cd->protocolAddress->addressLength, &u16, 2);
|
|
buf += sizeof(struct PortAddress) + u16;
|
|
|
|
desc = clock_description(target->clock);
|
|
cd->manufacturerIdentity = buf;
|
|
memcpy(cd->manufacturerIdentity,
|
|
desc->manufacturerIdentity, OUI_LEN);
|
|
buf += OUI_LEN;
|
|
*(buf++) = 0; /* reserved */
|
|
|
|
cd->productDescription = (struct PTPText *) buf;
|
|
ptp_text_copy(cd->productDescription, &desc->productDescription);
|
|
buf += sizeof(struct PTPText) + cd->productDescription->length;
|
|
|
|
cd->revisionData = (struct PTPText *) buf;
|
|
ptp_text_copy(cd->revisionData, &desc->revisionData);
|
|
buf += sizeof(struct PTPText) + cd->revisionData->length;
|
|
|
|
cd->userDescription = (struct PTPText *) buf;
|
|
ptp_text_copy(cd->userDescription, &desc->userDescription);
|
|
buf += sizeof(struct PTPText) + cd->userDescription->length;
|
|
|
|
if (target->delayMechanism == DM_P2P) {
|
|
memcpy(buf, profile_id_p2p, PROFILE_ID_LEN);
|
|
} else {
|
|
memcpy(buf, profile_id_drr, PROFILE_ID_LEN);
|
|
}
|
|
buf += PROFILE_ID_LEN;
|
|
datalen = buf - tlv->data;
|
|
break;
|
|
case TLV_PORT_DATA_SET:
|
|
pds = (struct portDS *) tlv->data;
|
|
pds->portIdentity = target->portIdentity;
|
|
if (target->state == PS_GRAND_MASTER) {
|
|
pds->portState = PS_MASTER;
|
|
} else {
|
|
pds->portState = target->state;
|
|
}
|
|
pds->logMinDelayReqInterval = target->logMinDelayReqInterval;
|
|
pds->peerMeanPathDelay = target->peerMeanPathDelay;
|
|
pds->logAnnounceInterval = target->logAnnounceInterval;
|
|
pds->announceReceiptTimeout = target->announceReceiptTimeout;
|
|
pds->logSyncInterval = target->logSyncInterval;
|
|
if (target->delayMechanism) {
|
|
pds->delayMechanism = target->delayMechanism;
|
|
} else {
|
|
pds->delayMechanism = DM_E2E;
|
|
}
|
|
pds->logMinPdelayReqInterval = target->logMinPdelayReqInterval;
|
|
pds->versionNumber = target->versionNumber;
|
|
datalen = sizeof(*pds);
|
|
break;
|
|
case TLV_LOG_ANNOUNCE_INTERVAL:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
mtd->val = target->logAnnounceInterval;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_ANNOUNCE_RECEIPT_TIMEOUT:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
mtd->val = target->announceReceiptTimeout;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_LOG_SYNC_INTERVAL:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
mtd->val = target->logSyncInterval;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_VERSION_NUMBER:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
mtd->val = target->versionNumber;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_DELAY_MECHANISM:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
if (target->delayMechanism)
|
|
mtd->val = target->delayMechanism;
|
|
else
|
|
mtd->val = DM_E2E;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_LOG_MIN_PDELAY_REQ_INTERVAL:
|
|
mtd = (struct management_tlv_datum *) tlv->data;
|
|
mtd->val = target->logMinPdelayReqInterval;
|
|
datalen = sizeof(*mtd);
|
|
break;
|
|
case TLV_PORT_DATA_SET_NP:
|
|
pdsnp = (struct port_ds_np *) tlv->data;
|
|
pdsnp->neighborPropDelayThresh = target->neighborPropDelayThresh;
|
|
pdsnp->asCapable = target->asCapable;
|
|
datalen = sizeof(*pdsnp);
|
|
break;
|
|
case TLV_PORT_PROPERTIES_NP:
|
|
ppn = (struct port_properties_np *)tlv->data;
|
|
ppn->portIdentity = target->portIdentity;
|
|
if (target->state == PS_GRAND_MASTER)
|
|
ppn->port_state = PS_MASTER;
|
|
else
|
|
ppn->port_state = target->state;
|
|
ppn->timestamping = target->timestamping;
|
|
ptp_text_set(&ppn->interface, target->iface->ts_label);
|
|
datalen = sizeof(*ppn) + ppn->interface.length;
|
|
break;
|
|
default:
|
|
/* The caller should *not* respond to this message. */
|
|
tlv_extra_recycle(extra);
|
|
return 0;
|
|
}
|
|
|
|
if (datalen % 2) {
|
|
tlv->data[datalen] = 0;
|
|
datalen++;
|
|
}
|
|
tlv->length = sizeof(tlv->id) + datalen;
|
|
rsp->header.messageLength += sizeof(*tlv) + datalen;
|
|
msg_tlv_attach(rsp, extra);
|
|
|
|
/* The caller can respond to this message. */
|
|
return 1;
|
|
}
|
|
|
|
static int port_management_get_response(struct port *target,
|
|
struct port *ingress, int id,
|
|
struct ptp_message *req)
|
|
{
|
|
struct PortIdentity pid = port_identity(target);
|
|
struct ptp_message *rsp;
|
|
int respond;
|
|
|
|
rsp = port_management_reply(pid, ingress, req);
|
|
if (!rsp) {
|
|
return 0;
|
|
}
|
|
respond = port_management_fill_response(target, rsp, id);
|
|
if (respond)
|
|
port_prepare_and_send(ingress, rsp, TRANS_GENERAL);
|
|
msg_put(rsp);
|
|
return respond;
|
|
}
|
|
|
|
static int port_management_set(struct port *target,
|
|
struct port *ingress, int id,
|
|
struct ptp_message *req)
|
|
{
|
|
int respond = 0;
|
|
struct management_tlv *tlv;
|
|
struct port_ds_np *pdsnp;
|
|
|
|
tlv = (struct management_tlv *) req->management.suffix;
|
|
|
|
switch (id) {
|
|
case TLV_PORT_DATA_SET_NP:
|
|
pdsnp = (struct port_ds_np *) tlv->data;
|
|
target->neighborPropDelayThresh = pdsnp->neighborPropDelayThresh;
|
|
respond = 1;
|
|
break;
|
|
}
|
|
if (respond && !port_management_get_response(target, ingress, id, req))
|
|
pr_err("port %hu: failed to send management set response", portnum(target));
|
|
return respond ? 1 : 0;
|
|
}
|
|
|
|
static void port_nrate_calculate(struct port *p, tmv_t origin, tmv_t ingress)
|
|
{
|
|
struct nrate_estimator *n = &p->nrate;
|
|
|
|
/*
|
|
* We experienced a successful exchanges of peer delay request
|
|
* and response, reset pdr_missing for this port.
|
|
*/
|
|
p->pdr_missing = 0;
|
|
|
|
if (tmv_is_zero(n->ingress1)) {
|
|
n->ingress1 = ingress;
|
|
n->origin1 = origin;
|
|
return;
|
|
}
|
|
n->count++;
|
|
if (n->count < n->max_count) {
|
|
return;
|
|
}
|
|
if (tmv_cmp(ingress, n->ingress1) == 0) {
|
|
pr_warning("bad timestamps in nrate calculation");
|
|
return;
|
|
}
|
|
n->ratio =
|
|
tmv_dbl(tmv_sub(origin, n->origin1)) /
|
|
tmv_dbl(tmv_sub(ingress, n->ingress1));
|
|
n->ingress1 = ingress;
|
|
n->origin1 = origin;
|
|
n->count = 0;
|
|
n->ratio_valid = 1;
|
|
}
|
|
|
|
static void port_nrate_initialize(struct port *p)
|
|
{
|
|
int shift = p->freq_est_interval - p->logMinPdelayReqInterval;
|
|
|
|
if (shift < 0)
|
|
shift = 0;
|
|
else if (shift >= sizeof(int) * 8) {
|
|
shift = sizeof(int) * 8 - 1;
|
|
pr_warning("freq_est_interval is too long");
|
|
}
|
|
|
|
/* We start in the 'incapable' state. */
|
|
p->pdr_missing = ALLOWED_LOST_RESPONSES + 1;
|
|
p->asCapable = 0;
|
|
|
|
p->peer_portid_valid = 0;
|
|
|
|
p->nrate.origin1 = tmv_zero();
|
|
p->nrate.ingress1 = tmv_zero();
|
|
p->nrate.max_count = (1 << shift);
|
|
p->nrate.count = 0;
|
|
p->nrate.ratio = 1.0;
|
|
p->nrate.ratio_valid = 0;
|
|
}
|
|
|
|
int port_set_announce_tmo(struct port *p)
|
|
{
|
|
return set_tmo_random(p->fda.fd[FD_ANNOUNCE_TIMER],
|
|
p->announceReceiptTimeout,
|
|
p->announce_span, p->logAnnounceInterval);
|
|
}
|
|
|
|
int port_set_delay_tmo(struct port *p)
|
|
{
|
|
if (p->delayMechanism == DM_P2P) {
|
|
return set_tmo_log(p->fda.fd[FD_DELAY_TIMER], 1,
|
|
p->logMinPdelayReqInterval);
|
|
} else {
|
|
return set_tmo_random(p->fda.fd[FD_DELAY_TIMER], 0, 2,
|
|
p->logMinDelayReqInterval);
|
|
}
|
|
}
|
|
|
|
static int port_set_manno_tmo(struct port *p)
|
|
{
|
|
return set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, p->logAnnounceInterval);
|
|
}
|
|
|
|
int port_set_qualification_tmo(struct port *p)
|
|
{
|
|
return set_tmo_log(p->fda.fd[FD_QUALIFICATION_TIMER],
|
|
1+clock_steps_removed(p->clock), p->logAnnounceInterval);
|
|
}
|
|
|
|
static int port_set_sync_rx_tmo(struct port *p)
|
|
{
|
|
return set_tmo_log(p->fda.fd[FD_SYNC_RX_TIMER],
|
|
p->syncReceiptTimeout, p->logSyncInterval);
|
|
}
|
|
|
|
static int port_set_sync_tx_tmo(struct port *p)
|
|
{
|
|
return set_tmo_log(p->fda.fd[FD_SYNC_TX_TIMER], 1, p->logSyncInterval);
|
|
}
|
|
|
|
void port_show_transition(struct port *p, enum port_state next,
|
|
enum fsm_event event)
|
|
{
|
|
if (event == EV_FAULT_DETECTED) {
|
|
pr_notice("port %hu: %s to %s on %s (%s)", portnum(p),
|
|
ps_str[p->state], ps_str[next], ev_str[event],
|
|
ft_str(last_fault_type(p)));
|
|
} else {
|
|
pr_notice("port %hu: %s to %s on %s", portnum(p),
|
|
ps_str[p->state], ps_str[next], ev_str[event]);
|
|
}
|
|
}
|
|
|
|
static void port_slave_priority_warning(struct port *p)
|
|
{
|
|
UInteger16 n = portnum(p);
|
|
pr_warning("port %hu: master state recommended in slave only mode", n);
|
|
pr_warning("port %hu: defaultDS.priority1 probably misconfigured", n);
|
|
}
|
|
|
|
static void port_synchronize(struct port *p,
|
|
tmv_t ingress_ts,
|
|
struct timestamp origin_ts,
|
|
Integer64 correction1, Integer64 correction2)
|
|
{
|
|
enum servo_state state;
|
|
tmv_t t1, t1c, t2, c1, c2;
|
|
|
|
port_set_sync_rx_tmo(p);
|
|
|
|
t1 = timestamp_to_tmv(origin_ts);
|
|
t2 = ingress_ts;
|
|
c1 = correction_to_tmv(correction1);
|
|
c2 = correction_to_tmv(correction2);
|
|
t1c = tmv_add(t1, tmv_add(c1, c2));
|
|
|
|
state = clock_synchronize(p->clock, t2, t1c);
|
|
switch (state) {
|
|
case SERVO_UNLOCKED:
|
|
port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0);
|
|
break;
|
|
case SERVO_JUMP:
|
|
port_dispatch(p, EV_SYNCHRONIZATION_FAULT, 0);
|
|
flush_delay_req(p);
|
|
if (p->peer_delay_req) {
|
|
msg_put(p->peer_delay_req);
|
|
p->peer_delay_req = NULL;
|
|
}
|
|
break;
|
|
case SERVO_LOCKED:
|
|
port_dispatch(p, EV_MASTER_CLOCK_SELECTED, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle out of order packets. The network stack might
|
|
* provide the follow up _before_ the sync message. After all,
|
|
* they can arrive on two different ports. In addition, time
|
|
* stamping in PHY devices might delay the event packets.
|
|
*/
|
|
static void port_syfufsm(struct port *p, enum syfu_event event,
|
|
struct ptp_message *m)
|
|
{
|
|
struct ptp_message *syn, *fup;
|
|
|
|
switch (p->syfu) {
|
|
case SF_EMPTY:
|
|
switch (event) {
|
|
case SYNC_MISMATCH:
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
p->syfu = SF_HAVE_SYNC;
|
|
break;
|
|
case FUP_MISMATCH:
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
p->syfu = SF_HAVE_FUP;
|
|
break;
|
|
case SYNC_MATCH:
|
|
break;
|
|
case FUP_MATCH:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SF_HAVE_SYNC:
|
|
switch (event) {
|
|
case SYNC_MISMATCH:
|
|
msg_put(p->last_syncfup);
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
break;
|
|
case SYNC_MATCH:
|
|
break;
|
|
case FUP_MISMATCH:
|
|
msg_put(p->last_syncfup);
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
p->syfu = SF_HAVE_FUP;
|
|
break;
|
|
case FUP_MATCH:
|
|
syn = p->last_syncfup;
|
|
port_synchronize(p, syn->hwts.ts, m->ts.pdu,
|
|
syn->header.correction,
|
|
m->header.correction);
|
|
msg_put(p->last_syncfup);
|
|
p->syfu = SF_EMPTY;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SF_HAVE_FUP:
|
|
switch (event) {
|
|
case SYNC_MISMATCH:
|
|
msg_put(p->last_syncfup);
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
p->syfu = SF_HAVE_SYNC;
|
|
break;
|
|
case SYNC_MATCH:
|
|
fup = p->last_syncfup;
|
|
port_synchronize(p, m->hwts.ts, fup->ts.pdu,
|
|
m->header.correction,
|
|
fup->header.correction);
|
|
msg_put(p->last_syncfup);
|
|
p->syfu = SF_EMPTY;
|
|
break;
|
|
case FUP_MISMATCH:
|
|
msg_put(p->last_syncfup);
|
|
msg_get(m);
|
|
p->last_syncfup = m;
|
|
break;
|
|
case FUP_MATCH:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int port_pdelay_request(struct port *p)
|
|
{
|
|
struct ptp_message *msg;
|
|
int err;
|
|
|
|
/* If multiple pdelay resp were not detected the counter can be reset */
|
|
if (!p->multiple_pdr_detected) {
|
|
p->multiple_seq_pdr_count = 0;
|
|
}
|
|
p->multiple_pdr_detected = 0;
|
|
|
|
msg = msg_allocate();
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
msg->header.tsmt = PDELAY_REQ | p->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct pdelay_req_msg);
|
|
msg->header.domainNumber = clock_domain_number(p->clock);
|
|
msg->header.correction = -p->asymmetry;
|
|
msg->header.sourcePortIdentity = p->portIdentity;
|
|
msg->header.sequenceId = p->seqnum.delayreq++;
|
|
msg->header.control = CTL_OTHER;
|
|
msg->header.logMessageInterval = port_is_ieee8021as(p) ?
|
|
p->logMinPdelayReqInterval : 0x7f;
|
|
|
|
if (unicast_client_enabled(p) && p->unicast_master_table->peer_name) {
|
|
msg->address = p->unicast_master_table->peer_addr.address;
|
|
msg->header.flagField[0] |= UNICAST;
|
|
}
|
|
|
|
err = peer_prepare_and_send(p, msg, TRANS_EVENT);
|
|
if (err) {
|
|
pr_err("port %hu: send peer delay request failed", portnum(p));
|
|
goto out;
|
|
}
|
|
if (msg_sots_missing(msg)) {
|
|
pr_err("missing timestamp on transmitted peer delay request");
|
|
goto out;
|
|
}
|
|
|
|
if (p->peer_delay_req) {
|
|
if (port_capable(p)) {
|
|
p->pdr_missing++;
|
|
}
|
|
msg_put(p->peer_delay_req);
|
|
}
|
|
p->peer_delay_req = msg;
|
|
return 0;
|
|
out:
|
|
msg_put(msg);
|
|
return -1;
|
|
}
|
|
|
|
int port_delay_request(struct port *p)
|
|
{
|
|
struct ptp_message *msg;
|
|
|
|
/* Time to send a new request, forget current pdelay resp and fup */
|
|
if (p->peer_delay_resp) {
|
|
msg_put(p->peer_delay_resp);
|
|
p->peer_delay_resp = NULL;
|
|
}
|
|
if (p->peer_delay_fup) {
|
|
msg_put(p->peer_delay_fup);
|
|
p->peer_delay_fup = NULL;
|
|
}
|
|
|
|
if (p->delayMechanism == DM_P2P) {
|
|
return port_pdelay_request(p);
|
|
}
|
|
|
|
msg = msg_allocate();
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
msg->header.tsmt = DELAY_REQ | p->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct delay_req_msg);
|
|
msg->header.domainNumber = clock_domain_number(p->clock);
|
|
msg->header.correction = -p->asymmetry;
|
|
msg->header.sourcePortIdentity = p->portIdentity;
|
|
msg->header.sequenceId = p->seqnum.delayreq++;
|
|
msg->header.control = CTL_DELAY_REQ;
|
|
msg->header.logMessageInterval = 0x7f;
|
|
|
|
if (p->hybrid_e2e) {
|
|
struct ptp_message *dst = TAILQ_FIRST(&p->best->messages);
|
|
msg->address = dst->address;
|
|
msg->header.flagField[0] |= UNICAST;
|
|
}
|
|
|
|
if (port_prepare_and_send(p, msg, TRANS_EVENT)) {
|
|
pr_err("port %hu: send delay request failed", portnum(p));
|
|
goto out;
|
|
}
|
|
if (msg_sots_missing(msg)) {
|
|
pr_err("missing timestamp on transmitted delay request");
|
|
goto out;
|
|
}
|
|
|
|
TAILQ_INSERT_HEAD(&p->delay_req, msg, list);
|
|
|
|
return 0;
|
|
out:
|
|
msg_put(msg);
|
|
return -1;
|
|
}
|
|
|
|
int port_tx_announce(struct port *p, struct address *dst)
|
|
{
|
|
struct timePropertiesDS *tp = clock_time_properties(p->clock);
|
|
struct parent_ds *dad = clock_parent_ds(p->clock);
|
|
struct ptp_message *msg;
|
|
int err;
|
|
|
|
if (p->inhibit_multicast_service && !dst) {
|
|
return 0;
|
|
}
|
|
if (!port_capable(p)) {
|
|
return 0;
|
|
}
|
|
msg = msg_allocate();
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
msg->header.tsmt = ANNOUNCE | p->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct announce_msg);
|
|
msg->header.domainNumber = clock_domain_number(p->clock);
|
|
msg->header.sourcePortIdentity = p->portIdentity;
|
|
msg->header.sequenceId = p->seqnum.announce++;
|
|
msg->header.control = CTL_OTHER;
|
|
msg->header.logMessageInterval = p->logAnnounceInterval;
|
|
|
|
msg->header.flagField[1] = tp->flags;
|
|
|
|
if (dst) {
|
|
msg->address = *dst;
|
|
msg->header.flagField[0] |= UNICAST;
|
|
}
|
|
msg->announce.currentUtcOffset = tp->currentUtcOffset;
|
|
msg->announce.grandmasterPriority1 = dad->pds.grandmasterPriority1;
|
|
msg->announce.grandmasterClockQuality = dad->pds.grandmasterClockQuality;
|
|
msg->announce.grandmasterPriority2 = dad->pds.grandmasterPriority2;
|
|
msg->announce.grandmasterIdentity = dad->pds.grandmasterIdentity;
|
|
msg->announce.stepsRemoved = clock_steps_removed(p->clock);
|
|
msg->announce.timeSource = tp->timeSource;
|
|
|
|
if (p->path_trace_enabled && path_trace_append(p, msg, dad)) {
|
|
pr_err("port %hu: append path trace failed", portnum(p));
|
|
}
|
|
|
|
err = port_prepare_and_send(p, msg, TRANS_GENERAL);
|
|
if (err) {
|
|
pr_err("port %hu: send announce failed", portnum(p));
|
|
}
|
|
msg_put(msg);
|
|
return err;
|
|
}
|
|
|
|
int port_tx_sync(struct port *p, struct address *dst)
|
|
{
|
|
struct ptp_message *msg, *fup;
|
|
int err, event;
|
|
|
|
switch (p->timestamping) {
|
|
case TS_SOFTWARE:
|
|
case TS_LEGACY_HW:
|
|
case TS_HARDWARE:
|
|
event = TRANS_EVENT;
|
|
break;
|
|
case TS_ONESTEP:
|
|
event = TRANS_ONESTEP;
|
|
break;
|
|
case TS_P2P1STEP:
|
|
event = TRANS_P2P1STEP;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
if (p->inhibit_multicast_service && !dst) {
|
|
return 0;
|
|
}
|
|
if (!port_capable(p)) {
|
|
return 0;
|
|
}
|
|
if (port_sync_incapable(p)) {
|
|
return 0;
|
|
}
|
|
msg = msg_allocate();
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
fup = msg_allocate();
|
|
if (!fup) {
|
|
msg_put(msg);
|
|
return -1;
|
|
}
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
msg->header.tsmt = SYNC | p->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct sync_msg);
|
|
msg->header.domainNumber = clock_domain_number(p->clock);
|
|
msg->header.sourcePortIdentity = p->portIdentity;
|
|
msg->header.sequenceId = p->seqnum.sync++;
|
|
msg->header.control = CTL_SYNC;
|
|
msg->header.logMessageInterval = p->logSyncInterval;
|
|
|
|
if (p->timestamping != TS_ONESTEP && p->timestamping != TS_P2P1STEP) {
|
|
msg->header.flagField[0] |= TWO_STEP;
|
|
}
|
|
|
|
if (dst) {
|
|
msg->address = *dst;
|
|
msg->header.flagField[0] |= UNICAST;
|
|
msg->header.logMessageInterval = 0x7f;
|
|
}
|
|
err = port_prepare_and_send(p, msg, event);
|
|
if (err) {
|
|
pr_err("port %hu: send sync failed", portnum(p));
|
|
goto out;
|
|
}
|
|
if (p->timestamping == TS_ONESTEP || p->timestamping == TS_P2P1STEP) {
|
|
goto out;
|
|
} else if (msg_sots_missing(msg)) {
|
|
pr_err("missing timestamp on transmitted sync");
|
|
err = -1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Send the follow up message right away.
|
|
*/
|
|
fup->hwts.type = p->timestamping;
|
|
|
|
fup->header.tsmt = FOLLOW_UP | p->transportSpecific;
|
|
fup->header.ver = PTP_VERSION;
|
|
fup->header.messageLength = sizeof(struct follow_up_msg);
|
|
fup->header.domainNumber = clock_domain_number(p->clock);
|
|
fup->header.sourcePortIdentity = p->portIdentity;
|
|
fup->header.sequenceId = p->seqnum.sync - 1;
|
|
fup->header.control = CTL_FOLLOW_UP;
|
|
fup->header.logMessageInterval = p->logSyncInterval;
|
|
|
|
fup->follow_up.preciseOriginTimestamp = tmv_to_Timestamp(msg->hwts.ts);
|
|
|
|
if (dst) {
|
|
fup->address = *dst;
|
|
fup->header.flagField[0] |= UNICAST;
|
|
}
|
|
if (p->follow_up_info && follow_up_info_append(fup)) {
|
|
pr_err("port %hu: append fup info failed", portnum(p));
|
|
err = -1;
|
|
goto out;
|
|
}
|
|
|
|
err = port_prepare_and_send(p, fup, TRANS_GENERAL);
|
|
if (err) {
|
|
pr_err("port %hu: send follow up failed", portnum(p));
|
|
}
|
|
out:
|
|
msg_put(msg);
|
|
msg_put(fup);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* port initialize and disable
|
|
*/
|
|
int port_is_enabled(struct port *p)
|
|
{
|
|
switch (p->state) {
|
|
case PS_INITIALIZING:
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
return 0;
|
|
case PS_LISTENING:
|
|
case PS_PRE_MASTER:
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
case PS_PASSIVE:
|
|
case PS_UNCALIBRATED:
|
|
case PS_SLAVE:
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void flush_last_sync(struct port *p)
|
|
{
|
|
if (p->syfu != SF_EMPTY) {
|
|
msg_put(p->last_syncfup);
|
|
p->syfu = SF_EMPTY;
|
|
}
|
|
}
|
|
|
|
void flush_delay_req(struct port *p)
|
|
{
|
|
struct ptp_message *m;
|
|
while ((m = TAILQ_FIRST(&p->delay_req)) != NULL) {
|
|
TAILQ_REMOVE(&p->delay_req, m, list);
|
|
msg_put(m);
|
|
}
|
|
}
|
|
|
|
static void flush_peer_delay(struct port *p)
|
|
{
|
|
if (p->peer_delay_req) {
|
|
msg_put(p->peer_delay_req);
|
|
p->peer_delay_req = NULL;
|
|
}
|
|
if (p->peer_delay_resp) {
|
|
msg_put(p->peer_delay_resp);
|
|
p->peer_delay_resp = NULL;
|
|
}
|
|
if (p->peer_delay_fup) {
|
|
msg_put(p->peer_delay_fup);
|
|
p->peer_delay_fup = NULL;
|
|
}
|
|
}
|
|
|
|
static void port_clear_fda(struct port *p, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
p->fda.fd[i] = -1;
|
|
}
|
|
|
|
void port_disable(struct port *p)
|
|
{
|
|
int i;
|
|
|
|
tc_flush(p);
|
|
flush_last_sync(p);
|
|
flush_delay_req(p);
|
|
flush_peer_delay(p);
|
|
|
|
p->best = NULL;
|
|
free_foreign_masters(p);
|
|
transport_close(p->trp, &p->fda);
|
|
|
|
for (i = 0; i < N_TIMER_FDS; i++) {
|
|
close(p->fda.fd[FD_FIRST_TIMER + i]);
|
|
}
|
|
|
|
/* Keep rtnl socket to get link status info. */
|
|
port_clear_fda(p, FD_RTNL);
|
|
clock_fda_changed(p->clock);
|
|
}
|
|
|
|
int port_initialize(struct port *p)
|
|
{
|
|
struct config *cfg = clock_config(p->clock);
|
|
int fd[N_TIMER_FDS], i;
|
|
|
|
p->multiple_seq_pdr_count = 0;
|
|
p->multiple_pdr_detected = 0;
|
|
p->last_fault_type = FT_UNSPECIFIED;
|
|
p->logMinDelayReqInterval = config_get_int(cfg, p->name, "logMinDelayReqInterval");
|
|
p->peerMeanPathDelay = 0;
|
|
p->logAnnounceInterval = config_get_int(cfg, p->name, "logAnnounceInterval");
|
|
p->announceReceiptTimeout = config_get_int(cfg, p->name, "announceReceiptTimeout");
|
|
p->syncReceiptTimeout = config_get_int(cfg, p->name, "syncReceiptTimeout");
|
|
p->transportSpecific = config_get_int(cfg, p->name, "transportSpecific");
|
|
p->transportSpecific <<= 4;
|
|
p->match_transport_specific = !config_get_int(cfg, p->name, "ignore_transport_specific");
|
|
p->master_only = config_get_int(cfg, p->name, "masterOnly");
|
|
p->localPriority = config_get_int(cfg, p->name, "G.8275.portDS.localPriority");
|
|
p->logSyncInterval = config_get_int(cfg, p->name, "logSyncInterval");
|
|
p->logMinPdelayReqInterval = config_get_int(cfg, p->name, "logMinPdelayReqInterval");
|
|
p->neighborPropDelayThresh = config_get_int(cfg, p->name, "neighborPropDelayThresh");
|
|
p->min_neighbor_prop_delay = config_get_int(cfg, p->name, "min_neighbor_prop_delay");
|
|
|
|
for (i = 0; i < N_TIMER_FDS; i++) {
|
|
fd[i] = -1;
|
|
}
|
|
for (i = 0; i < N_TIMER_FDS; i++) {
|
|
fd[i] = timerfd_create(CLOCK_MONOTONIC, 0);
|
|
if (fd[i] < 0) {
|
|
pr_err("timerfd_create: %s", strerror(errno));
|
|
goto no_timers;
|
|
}
|
|
}
|
|
if (transport_open(p->trp, p->iface, &p->fda, p->timestamping))
|
|
goto no_tropen;
|
|
|
|
for (i = 0; i < N_TIMER_FDS; i++) {
|
|
p->fda.fd[FD_FIRST_TIMER + i] = fd[i];
|
|
}
|
|
|
|
if (port_set_announce_tmo(p)) {
|
|
goto no_tmo;
|
|
}
|
|
if (unicast_client_enabled(p) && unicast_client_set_tmo(p)) {
|
|
goto no_tmo;
|
|
}
|
|
|
|
/* No need to open rtnl socket on UDS port. */
|
|
if (transport_type(p->trp) != TRANS_UDS) {
|
|
if (p->fda.fd[FD_RTNL] == -1)
|
|
p->fda.fd[FD_RTNL] = rtnl_open();
|
|
if (p->fda.fd[FD_RTNL] >= 0)
|
|
rtnl_link_query(p->fda.fd[FD_RTNL], p->iface->name);
|
|
}
|
|
|
|
port_nrate_initialize(p);
|
|
|
|
clock_fda_changed(p->clock);
|
|
return 0;
|
|
|
|
no_tmo:
|
|
transport_close(p->trp, &p->fda);
|
|
no_tropen:
|
|
no_timers:
|
|
for (i = 0; i < N_TIMER_FDS; i++) {
|
|
if (fd[i] >= 0)
|
|
close(fd[i]);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int port_renew_transport(struct port *p)
|
|
{
|
|
int res;
|
|
|
|
if (!port_is_enabled(p)) {
|
|
return 0;
|
|
}
|
|
transport_close(p->trp, &p->fda);
|
|
port_clear_fda(p, FD_FIRST_TIMER);
|
|
res = transport_open(p->trp, p->iface, &p->fda, p->timestamping);
|
|
/* Need to call clock_fda_changed even if transport_open failed in
|
|
* order to update clock to the now closed descriptors. */
|
|
clock_fda_changed(p->clock);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if the announce message is different than last.
|
|
*/
|
|
static int update_current_master(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct foreign_clock *fc = p->best;
|
|
struct ptp_message *tmp;
|
|
struct parent_ds *dad;
|
|
struct path_trace_tlv *ptt;
|
|
struct timePropertiesDS tds;
|
|
|
|
if (!msg_source_equal(m, fc))
|
|
return add_foreign_master(p, m);
|
|
|
|
if (p->state != PS_PASSIVE) {
|
|
tds.currentUtcOffset = m->announce.currentUtcOffset;
|
|
tds.flags = m->header.flagField[1];
|
|
tds.timeSource = m->announce.timeSource;
|
|
clock_update_time_properties(p->clock, tds);
|
|
}
|
|
if (p->path_trace_enabled) {
|
|
ptt = (struct path_trace_tlv *) m->announce.suffix;
|
|
dad = clock_parent_ds(p->clock);
|
|
memcpy(dad->ptl, ptt->cid, ptt->length);
|
|
dad->path_length = path_length(ptt);
|
|
}
|
|
port_set_announce_tmo(p);
|
|
fc_prune(fc);
|
|
msg_get(m);
|
|
fc->n_messages++;
|
|
TAILQ_INSERT_HEAD(&fc->messages, m, list);
|
|
if (fc->n_messages > 1) {
|
|
tmp = TAILQ_NEXT(m, list);
|
|
return announce_compare(m, tmp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct dataset *port_best_foreign(struct port *port)
|
|
{
|
|
return port->best ? &port->best->dataset : NULL;
|
|
}
|
|
|
|
/* message processing routines */
|
|
|
|
/*
|
|
* Returns non-zero if the announce message is both qualified and different.
|
|
*/
|
|
int process_announce(struct port *p, struct ptp_message *m)
|
|
{
|
|
int result = 0;
|
|
|
|
if (m->announce.stepsRemoved >= clock_max_steps_removed(p->clock)) {
|
|
return result;
|
|
}
|
|
|
|
switch (p->state) {
|
|
case PS_INITIALIZING:
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
break;
|
|
case PS_LISTENING:
|
|
case PS_PRE_MASTER:
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
result = add_foreign_master(p, m);
|
|
break;
|
|
case PS_PASSIVE:
|
|
case PS_UNCALIBRATED:
|
|
case PS_SLAVE:
|
|
result = update_current_master(p, m);
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int process_delay_req(struct port *p, struct ptp_message *m)
|
|
{
|
|
int err, nsm, saved_seqnum_sync;
|
|
struct ptp_message *msg;
|
|
|
|
nsm = port_nsm_reply(p, m);
|
|
|
|
if (!nsm && p->state != PS_MASTER && p->state != PS_GRAND_MASTER) {
|
|
return 0;
|
|
}
|
|
|
|
if (p->delayMechanism == DM_P2P) {
|
|
pr_warning("port %hu: delay request on P2P port", portnum(p));
|
|
return 0;
|
|
}
|
|
|
|
msg = msg_allocate();
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
msg->header.tsmt = DELAY_RESP | p->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct delay_resp_msg);
|
|
msg->header.domainNumber = m->header.domainNumber;
|
|
msg->header.correction = m->header.correction;
|
|
msg->header.sourcePortIdentity = p->portIdentity;
|
|
msg->header.sequenceId = m->header.sequenceId;
|
|
msg->header.control = CTL_DELAY_RESP;
|
|
msg->header.logMessageInterval = p->logMinDelayReqInterval;
|
|
|
|
msg->delay_resp.receiveTimestamp = tmv_to_Timestamp(m->hwts.ts);
|
|
|
|
msg->delay_resp.requestingPortIdentity = m->header.sourcePortIdentity;
|
|
|
|
if (p->hybrid_e2e && msg_unicast(m)) {
|
|
msg->address = m->address;
|
|
msg->header.flagField[0] |= UNICAST;
|
|
msg->header.logMessageInterval = 0x7f;
|
|
}
|
|
if (nsm && net_sync_resp_append(p, msg)) {
|
|
pr_err("port %hu: append NSM failed", portnum(p));
|
|
err = -1;
|
|
goto out;
|
|
}
|
|
err = port_prepare_and_send(p, msg, TRANS_GENERAL);
|
|
if (err) {
|
|
pr_err("port %hu: send delay response failed", portnum(p));
|
|
goto out;
|
|
}
|
|
if (nsm) {
|
|
saved_seqnum_sync = p->seqnum.sync;
|
|
p->seqnum.sync = m->header.sequenceId;
|
|
err = port_tx_sync(p, &m->address);
|
|
p->seqnum.sync = saved_seqnum_sync;
|
|
}
|
|
out:
|
|
msg_put(msg);
|
|
return err;
|
|
}
|
|
|
|
void process_delay_resp(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct delay_resp_msg *rsp = &m->delay_resp;
|
|
struct PortIdentity master;
|
|
struct ptp_message *req;
|
|
tmv_t c3, t3, t4, t4c;
|
|
|
|
master = clock_parent_identity(p->clock);
|
|
|
|
if (p->state != PS_UNCALIBRATED && p->state != PS_SLAVE) {
|
|
return;
|
|
}
|
|
if (!pid_eq(&rsp->requestingPortIdentity, &p->portIdentity)) {
|
|
return;
|
|
}
|
|
if (!pid_eq(&master, &m->header.sourcePortIdentity)) {
|
|
return;
|
|
}
|
|
TAILQ_FOREACH(req, &p->delay_req, list) {
|
|
if (rsp->hdr.sequenceId == ntohs(req->delay_req.hdr.sequenceId)) {
|
|
break;
|
|
}
|
|
}
|
|
if (!req) {
|
|
return;
|
|
}
|
|
|
|
c3 = correction_to_tmv(m->header.correction);
|
|
t3 = req->hwts.ts;
|
|
t4 = timestamp_to_tmv(m->ts.pdu);
|
|
t4c = tmv_sub(t4, c3);
|
|
|
|
clock_path_delay(p->clock, t3, t4c);
|
|
|
|
TAILQ_REMOVE(&p->delay_req, req, list);
|
|
msg_put(req);
|
|
|
|
if (p->logMinDelayReqInterval == rsp->hdr.logMessageInterval) {
|
|
return;
|
|
}
|
|
if (msg_unicast(m)) {
|
|
/* Unicast responses have logMinDelayReqInterval set to 0x7F. */
|
|
return;
|
|
}
|
|
if (rsp->hdr.logMessageInterval < -10 ||
|
|
rsp->hdr.logMessageInterval > 22) {
|
|
pl_info(300, "port %hu: ignore bogus delay request interval 2^%d",
|
|
portnum(p), rsp->hdr.logMessageInterval);
|
|
return;
|
|
}
|
|
p->logMinDelayReqInterval = rsp->hdr.logMessageInterval;
|
|
pr_notice("port %hu: minimum delay request interval 2^%d",
|
|
portnum(p), p->logMinDelayReqInterval);
|
|
port_set_delay_tmo(p);
|
|
}
|
|
|
|
void process_follow_up(struct port *p, struct ptp_message *m)
|
|
{
|
|
enum syfu_event event;
|
|
struct PortIdentity master;
|
|
switch (p->state) {
|
|
case PS_INITIALIZING:
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
case PS_LISTENING:
|
|
case PS_PRE_MASTER:
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
case PS_PASSIVE:
|
|
return;
|
|
case PS_UNCALIBRATED:
|
|
case PS_SLAVE:
|
|
break;
|
|
}
|
|
master = clock_parent_identity(p->clock);
|
|
if (!pid_eq(&master, &m->header.sourcePortIdentity)) {
|
|
return;
|
|
}
|
|
|
|
if (p->follow_up_info) {
|
|
struct follow_up_info_tlv *fui = follow_up_info_extract(m);
|
|
if (!fui)
|
|
return;
|
|
clock_follow_up_info(p->clock, fui);
|
|
}
|
|
|
|
if (p->syfu == SF_HAVE_SYNC &&
|
|
p->last_syncfup->header.sequenceId == m->header.sequenceId) {
|
|
event = FUP_MATCH;
|
|
} else {
|
|
event = FUP_MISMATCH;
|
|
}
|
|
port_syfufsm(p, event, m);
|
|
}
|
|
|
|
int process_pdelay_req(struct port *p, struct ptp_message *m)
|
|
{
|
|
struct ptp_message *rsp, *fup;
|
|
enum transport_event event;
|
|
int err;
|
|
|
|
switch (p->timestamping) {
|
|
case TS_SOFTWARE:
|
|
case TS_LEGACY_HW:
|
|
case TS_HARDWARE:
|
|
case TS_ONESTEP:
|
|
event = TRANS_EVENT;
|
|
break;
|
|
case TS_P2P1STEP:
|
|
event = TRANS_P2P1STEP;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
if (p->delayMechanism == DM_E2E) {
|
|
pr_warning("port %hu: pdelay_req on E2E port", portnum(p));
|
|
return 0;
|
|
}
|
|
if (p->delayMechanism == DM_AUTO) {
|
|
pr_info("port %hu: peer detected, switch to P2P", portnum(p));
|
|
p->delayMechanism = DM_P2P;
|
|
port_set_delay_tmo(p);
|
|
}
|
|
if (p->peer_portid_valid) {
|
|
if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) {
|
|
pr_err("port %hu: received pdelay_req msg with "
|
|
"unexpected peer port id %s",
|
|
portnum(p),
|
|
pid2str(&m->header.sourcePortIdentity));
|
|
p->peer_portid_valid = 0;
|
|
port_capable(p);
|
|
}
|
|
} else {
|
|
p->peer_portid_valid = 1;
|
|
p->peer_portid = m->header.sourcePortIdentity;
|
|
pr_debug("port %hu: peer port id set to %s", portnum(p),
|
|
pid2str(&p->peer_portid));
|
|
}
|
|
|
|
rsp = msg_allocate();
|
|
if (!rsp) {
|
|
return -1;
|
|
}
|
|
|
|
fup = msg_allocate();
|
|
if (!fup) {
|
|
msg_put(rsp);
|
|
return -1;
|
|
}
|
|
|
|
rsp->hwts.type = p->timestamping;
|
|
|
|
rsp->header.tsmt = PDELAY_RESP | p->transportSpecific;
|
|
rsp->header.ver = PTP_VERSION;
|
|
rsp->header.messageLength = sizeof(struct pdelay_resp_msg);
|
|
rsp->header.domainNumber = m->header.domainNumber;
|
|
rsp->header.sourcePortIdentity = p->portIdentity;
|
|
rsp->header.sequenceId = m->header.sequenceId;
|
|
rsp->header.control = CTL_OTHER;
|
|
rsp->header.logMessageInterval = 0x7f;
|
|
|
|
/*
|
|
* NB - We do not have any fraction nanoseconds for the correction
|
|
* fields, neither in the response or the follow up.
|
|
*/
|
|
if (p->timestamping == TS_P2P1STEP) {
|
|
rsp->header.correction = m->header.correction;
|
|
rsp->header.correction += p->tx_timestamp_offset;
|
|
rsp->header.correction += p->rx_timestamp_offset;
|
|
} else {
|
|
rsp->header.flagField[0] |= TWO_STEP;
|
|
rsp->pdelay_resp.requestReceiptTimestamp =
|
|
tmv_to_Timestamp(m->hwts.ts);
|
|
}
|
|
rsp->pdelay_resp.requestingPortIdentity = m->header.sourcePortIdentity;
|
|
|
|
if (msg_unicast(m)) {
|
|
rsp->address = m->address;
|
|
rsp->header.flagField[0] |= UNICAST;
|
|
}
|
|
|
|
err = peer_prepare_and_send(p, rsp, event);
|
|
if (err) {
|
|
pr_err("port %hu: send peer delay response failed", portnum(p));
|
|
goto out;
|
|
}
|
|
if (p->timestamping == TS_P2P1STEP) {
|
|
goto out;
|
|
} else if (msg_sots_missing(rsp)) {
|
|
pr_err("missing timestamp on transmitted peer delay response");
|
|
err = -1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Send the follow up message right away.
|
|
*/
|
|
fup->hwts.type = p->timestamping;
|
|
|
|
fup->header.tsmt = PDELAY_RESP_FOLLOW_UP | p->transportSpecific;
|
|
fup->header.ver = PTP_VERSION;
|
|
fup->header.messageLength = sizeof(struct pdelay_resp_fup_msg);
|
|
fup->header.domainNumber = m->header.domainNumber;
|
|
fup->header.correction = m->header.correction;
|
|
fup->header.sourcePortIdentity = p->portIdentity;
|
|
fup->header.sequenceId = m->header.sequenceId;
|
|
fup->header.control = CTL_OTHER;
|
|
fup->header.logMessageInterval = 0x7f;
|
|
|
|
fup->pdelay_resp_fup.requestingPortIdentity = m->header.sourcePortIdentity;
|
|
|
|
fup->pdelay_resp_fup.responseOriginTimestamp =
|
|
tmv_to_Timestamp(rsp->hwts.ts);
|
|
|
|
if (msg_unicast(m)) {
|
|
fup->address = m->address;
|
|
fup->header.flagField[0] |= UNICAST;
|
|
}
|
|
|
|
err = peer_prepare_and_send(p, fup, TRANS_GENERAL);
|
|
if (err) {
|
|
pr_err("port %hu: send pdelay_resp_fup failed", portnum(p));
|
|
}
|
|
out:
|
|
msg_put(rsp);
|
|
msg_put(fup);
|
|
return err;
|
|
}
|
|
|
|
static void port_peer_delay(struct port *p)
|
|
{
|
|
tmv_t c1, c2, t1, t2, t3, t3c, t4;
|
|
struct ptp_message *req = p->peer_delay_req;
|
|
struct ptp_message *rsp = p->peer_delay_resp;
|
|
struct ptp_message *fup = p->peer_delay_fup;
|
|
|
|
/* Check for response, validate port and sequence number. */
|
|
|
|
if (!rsp)
|
|
return;
|
|
|
|
if (!pid_eq(&rsp->pdelay_resp.requestingPortIdentity, &p->portIdentity))
|
|
return;
|
|
|
|
if (rsp->header.sequenceId != ntohs(req->header.sequenceId))
|
|
return;
|
|
|
|
t1 = req->hwts.ts;
|
|
t4 = rsp->hwts.ts;
|
|
c1 = correction_to_tmv(rsp->header.correction + p->asymmetry);
|
|
|
|
/* Process one-step response immediately. */
|
|
if (one_step(rsp)) {
|
|
t2 = tmv_zero();
|
|
t3 = tmv_zero();
|
|
c2 = tmv_zero();
|
|
goto calc;
|
|
}
|
|
|
|
/* Check for follow up, validate port and sequence number. */
|
|
|
|
if (!fup)
|
|
return;
|
|
|
|
if (!pid_eq(&fup->pdelay_resp_fup.requestingPortIdentity, &p->portIdentity))
|
|
return;
|
|
|
|
if (fup->header.sequenceId != rsp->header.sequenceId)
|
|
return;
|
|
|
|
if (!source_pid_eq(fup, rsp))
|
|
return;
|
|
|
|
/* Process follow up response. */
|
|
t2 = timestamp_to_tmv(rsp->ts.pdu);
|
|
t3 = timestamp_to_tmv(fup->ts.pdu);
|
|
c2 = correction_to_tmv(fup->header.correction);
|
|
calc:
|
|
t3c = tmv_add(t3, tmv_add(c1, c2));
|
|
|
|
if (p->follow_up_info)
|
|
port_nrate_calculate(p, t3c, t4);
|
|
|
|
tsproc_set_clock_rate_ratio(p->tsproc, p->nrate.ratio *
|
|
clock_rate_ratio(p->clock));
|
|
tsproc_up_ts(p->tsproc, t1, t2);
|
|
tsproc_down_ts(p->tsproc, t3c, t4);
|
|
if (tsproc_update_delay(p->tsproc, &p->peer_delay))
|
|
return;
|
|
|
|
p->peerMeanPathDelay = tmv_to_TimeInterval(p->peer_delay);
|
|
|
|
if (p->state == PS_UNCALIBRATED || p->state == PS_SLAVE) {
|
|
clock_peer_delay(p->clock, p->peer_delay, t1, t2,
|
|
p->nrate.ratio);
|
|
}
|
|
|
|
msg_put(p->peer_delay_req);
|
|
p->peer_delay_req = NULL;
|
|
}
|
|
|
|
int process_pdelay_resp(struct port *p, struct ptp_message *m)
|
|
{
|
|
if (p->peer_delay_resp) {
|
|
if (!source_pid_eq(p->peer_delay_resp, m)) {
|
|
pr_err("port %hu: multiple peer responses", portnum(p));
|
|
if (!p->multiple_pdr_detected) {
|
|
p->multiple_pdr_detected = 1;
|
|
p->multiple_seq_pdr_count++;
|
|
}
|
|
if (p->multiple_seq_pdr_count >= 3) {
|
|
p->last_fault_type = FT_BAD_PEER_NETWORK;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
if (!p->peer_delay_req) {
|
|
pr_err("port %hu: rogue peer delay response", portnum(p));
|
|
return -1;
|
|
}
|
|
if (p->peer_portid_valid) {
|
|
if (!pid_eq(&p->peer_portid, &m->header.sourcePortIdentity)) {
|
|
pr_err("port %hu: received pdelay_resp msg with "
|
|
"unexpected peer port id %s",
|
|
portnum(p),
|
|
pid2str(&m->header.sourcePortIdentity));
|
|
p->peer_portid_valid = 0;
|
|
port_capable(p);
|
|
}
|
|
} else {
|
|
p->peer_portid_valid = 1;
|
|
p->peer_portid = m->header.sourcePortIdentity;
|
|
pr_debug("port %hu: peer port id set to %s", portnum(p),
|
|
pid2str(&p->peer_portid));
|
|
}
|
|
|
|
if (p->peer_delay_resp) {
|
|
msg_put(p->peer_delay_resp);
|
|
}
|
|
msg_get(m);
|
|
p->peer_delay_resp = m;
|
|
port_peer_delay(p);
|
|
return 0;
|
|
}
|
|
|
|
void process_pdelay_resp_fup(struct port *p, struct ptp_message *m)
|
|
{
|
|
if (!p->peer_delay_req) {
|
|
return;
|
|
}
|
|
|
|
if (p->peer_delay_fup) {
|
|
msg_put(p->peer_delay_fup);
|
|
}
|
|
|
|
msg_get(m);
|
|
p->peer_delay_fup = m;
|
|
port_peer_delay(p);
|
|
}
|
|
|
|
void process_sync(struct port *p, struct ptp_message *m)
|
|
{
|
|
enum syfu_event event;
|
|
struct PortIdentity master;
|
|
switch (p->state) {
|
|
case PS_INITIALIZING:
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
case PS_LISTENING:
|
|
case PS_PRE_MASTER:
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
case PS_PASSIVE:
|
|
return;
|
|
case PS_UNCALIBRATED:
|
|
case PS_SLAVE:
|
|
break;
|
|
}
|
|
master = clock_parent_identity(p->clock);
|
|
if (!pid_eq(&master, &m->header.sourcePortIdentity)) {
|
|
return;
|
|
}
|
|
|
|
if (!msg_unicast(m) &&
|
|
m->header.logMessageInterval != p->log_sync_interval) {
|
|
p->log_sync_interval = m->header.logMessageInterval;
|
|
clock_sync_interval(p->clock, p->log_sync_interval);
|
|
}
|
|
|
|
m->header.correction += p->asymmetry;
|
|
|
|
if (one_step(m)) {
|
|
port_synchronize(p, m->hwts.ts, m->ts.pdu,
|
|
m->header.correction, 0);
|
|
flush_last_sync(p);
|
|
return;
|
|
}
|
|
|
|
if (p->syfu == SF_HAVE_FUP &&
|
|
fup_sync_ok(p->last_syncfup, m) &&
|
|
p->last_syncfup->header.sequenceId == m->header.sequenceId) {
|
|
event = SYNC_MATCH;
|
|
} else {
|
|
event = SYNC_MISMATCH;
|
|
}
|
|
port_syfufsm(p, event, m);
|
|
}
|
|
|
|
/* public methods */
|
|
|
|
void port_close(struct port *p)
|
|
{
|
|
if (port_is_enabled(p)) {
|
|
port_disable(p);
|
|
}
|
|
|
|
if (p->fda.fd[FD_RTNL] >= 0) {
|
|
rtnl_close(p->fda.fd[FD_RTNL]);
|
|
}
|
|
|
|
unicast_service_cleanup(p);
|
|
transport_destroy(p->trp);
|
|
tsproc_destroy(p->tsproc);
|
|
if (p->fault_fd >= 0) {
|
|
close(p->fault_fd);
|
|
}
|
|
free(p);
|
|
}
|
|
|
|
struct foreign_clock *port_compute_best(struct port *p)
|
|
{
|
|
int (*dscmp)(struct dataset *a, struct dataset *b);
|
|
struct foreign_clock *fc;
|
|
struct ptp_message *tmp;
|
|
|
|
dscmp = clock_dscmp(p->clock);
|
|
p->best = NULL;
|
|
|
|
if (p->master_only)
|
|
return p->best;
|
|
|
|
LIST_FOREACH(fc, &p->foreign_masters, list) {
|
|
tmp = TAILQ_FIRST(&fc->messages);
|
|
if (!tmp)
|
|
continue;
|
|
|
|
announce_to_dataset(tmp, p, &fc->dataset);
|
|
|
|
fc_prune(fc);
|
|
|
|
if (fc->n_messages < FOREIGN_MASTER_THRESHOLD)
|
|
continue;
|
|
|
|
if (!p->best)
|
|
p->best = fc;
|
|
else if (dscmp(&fc->dataset, &p->best->dataset) > 0)
|
|
p->best = fc;
|
|
else
|
|
fc_clear(fc);
|
|
}
|
|
|
|
return p->best;
|
|
}
|
|
|
|
static void port_e2e_transition(struct port *p, enum port_state next)
|
|
{
|
|
port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_DELAY_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]);
|
|
/* Leave FD_UNICAST_REQ_TIMER running. */
|
|
|
|
switch (next) {
|
|
case PS_INITIALIZING:
|
|
break;
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
port_disable(p);
|
|
break;
|
|
case PS_LISTENING:
|
|
port_set_announce_tmo(p);
|
|
break;
|
|
case PS_PRE_MASTER:
|
|
port_set_qualification_tmo(p);
|
|
break;
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/
|
|
port_set_sync_tx_tmo(p);
|
|
break;
|
|
case PS_PASSIVE:
|
|
port_set_announce_tmo(p);
|
|
break;
|
|
case PS_UNCALIBRATED:
|
|
flush_last_sync(p);
|
|
flush_delay_req(p);
|
|
/* fall through */
|
|
case PS_SLAVE:
|
|
port_set_announce_tmo(p);
|
|
port_set_delay_tmo(p);
|
|
break;
|
|
};
|
|
}
|
|
|
|
static void port_p2p_transition(struct port *p, enum port_state next)
|
|
{
|
|
port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_SYNC_RX_TIMER]);
|
|
/* Leave FD_DELAY_TIMER running. */
|
|
port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]);
|
|
port_clr_tmo(p->fda.fd[FD_SYNC_TX_TIMER]);
|
|
/* Leave FD_UNICAST_REQ_TIMER running. */
|
|
|
|
switch (next) {
|
|
case PS_INITIALIZING:
|
|
break;
|
|
case PS_FAULTY:
|
|
case PS_DISABLED:
|
|
port_disable(p);
|
|
break;
|
|
case PS_LISTENING:
|
|
port_set_announce_tmo(p);
|
|
port_set_delay_tmo(p);
|
|
break;
|
|
case PS_PRE_MASTER:
|
|
port_set_qualification_tmo(p);
|
|
break;
|
|
case PS_MASTER:
|
|
case PS_GRAND_MASTER:
|
|
set_tmo_log(p->fda.fd[FD_MANNO_TIMER], 1, -10); /*~1ms*/
|
|
port_set_sync_tx_tmo(p);
|
|
break;
|
|
case PS_PASSIVE:
|
|
port_set_announce_tmo(p);
|
|
break;
|
|
case PS_UNCALIBRATED:
|
|
flush_last_sync(p);
|
|
flush_peer_delay(p);
|
|
/* fall through */
|
|
case PS_SLAVE:
|
|
port_set_announce_tmo(p);
|
|
break;
|
|
};
|
|
}
|
|
|
|
void port_dispatch(struct port *p, enum fsm_event event, int mdiff)
|
|
{
|
|
p->dispatch(p, event, mdiff);
|
|
}
|
|
|
|
static void bc_dispatch(struct port *p, enum fsm_event event, int mdiff)
|
|
{
|
|
if (clock_slave_only(p->clock)) {
|
|
if (event == EV_RS_MASTER || event == EV_RS_GRAND_MASTER) {
|
|
port_slave_priority_warning(p);
|
|
}
|
|
}
|
|
|
|
if (!port_state_update(p, event, mdiff)) {
|
|
return;
|
|
}
|
|
|
|
if (p->delayMechanism == DM_P2P) {
|
|
port_p2p_transition(p, p->state);
|
|
} else {
|
|
port_e2e_transition(p, p->state);
|
|
}
|
|
|
|
if (p->jbod && p->state == PS_UNCALIBRATED) {
|
|
if (clock_switch_phc(p->clock, p->phc_index)) {
|
|
p->last_fault_type = FT_SWITCH_PHC;
|
|
port_dispatch(p, EV_FAULT_DETECTED, 0);
|
|
return;
|
|
}
|
|
clock_sync_interval(p->clock, p->log_sync_interval);
|
|
}
|
|
}
|
|
|
|
void port_link_status(void *ctx, int linkup, int ts_index)
|
|
{
|
|
struct port *p = ctx;
|
|
int link_state;
|
|
char ts_label[MAX_IFNAME_SIZE + 1] = {0};
|
|
int required_modes;
|
|
|
|
link_state = linkup ? LINK_UP : LINK_DOWN;
|
|
if (p->link_status & link_state) {
|
|
p->link_status = link_state;
|
|
} else {
|
|
p->link_status = link_state | LINK_STATE_CHANGED;
|
|
pr_notice("port %hu: link %s", portnum(p), linkup ? "up" : "down");
|
|
}
|
|
|
|
/* ts_label changed */
|
|
if (if_indextoname(ts_index, ts_label) && strcmp(p->iface->ts_label, ts_label)) {
|
|
strncpy(p->iface->ts_label, ts_label, MAX_IFNAME_SIZE);
|
|
p->link_status |= TS_LABEL_CHANGED;
|
|
pr_notice("port %hu: ts label changed to %s", portnum(p), ts_label);
|
|
}
|
|
|
|
/* Both link down/up and change ts_label may change phc index. */
|
|
if (p->link_status & LINK_UP &&
|
|
(p->link_status & LINK_STATE_CHANGED || p->link_status & TS_LABEL_CHANGED)) {
|
|
sk_get_ts_info(p->iface->ts_label, &p->iface->ts_info);
|
|
|
|
/* Only switch phc with HW time stamping mode */
|
|
if (p->phc_index >= 0 && p->iface->ts_info.valid) {
|
|
required_modes = clock_required_modes(p->clock);
|
|
if ((p->iface->ts_info.so_timestamping & required_modes) != required_modes) {
|
|
pr_err("interface '%s' does not support requested "
|
|
"timestamping mode, set link status down by force.",
|
|
p->iface->ts_label);
|
|
p->link_status = LINK_DOWN | LINK_STATE_CHANGED;
|
|
} else if (p->phc_index != p->iface->ts_info.phc_index) {
|
|
p->phc_index = p->iface->ts_info.phc_index;
|
|
|
|
if (clock_switch_phc(p->clock, p->phc_index)) {
|
|
p->last_fault_type = FT_SWITCH_PHC;
|
|
port_dispatch(p, EV_FAULT_DETECTED, 0);
|
|
return;
|
|
}
|
|
clock_sync_interval(p->clock, p->log_sync_interval);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A port going down can affect the BMCA result.
|
|
* Force a state decision event.
|
|
*/
|
|
if (p->link_status & LINK_DOWN)
|
|
clock_set_sde(p->clock, 1);
|
|
}
|
|
|
|
enum fsm_event port_event(struct port *p, int fd_index)
|
|
{
|
|
return p->event(p, fd_index);
|
|
}
|
|
|
|
static enum fsm_event bc_event(struct port *p, int fd_index)
|
|
{
|
|
enum fsm_event event = EV_NONE;
|
|
struct ptp_message *msg;
|
|
int cnt, fd = p->fda.fd[fd_index], err;
|
|
|
|
switch (fd_index) {
|
|
case FD_ANNOUNCE_TIMER:
|
|
case FD_SYNC_RX_TIMER:
|
|
pr_debug("port %hu: %s timeout", portnum(p),
|
|
fd_index == FD_SYNC_RX_TIMER ? "rx sync" : "announce");
|
|
if (p->best)
|
|
fc_clear(p->best);
|
|
port_set_announce_tmo(p);
|
|
delay_req_prune(p);
|
|
if (clock_slave_only(p->clock) && p->delayMechanism != DM_P2P &&
|
|
port_renew_transport(p)) {
|
|
return EV_FAULT_DETECTED;
|
|
}
|
|
return EV_ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES;
|
|
|
|
case FD_DELAY_TIMER:
|
|
pr_debug("port %hu: delay timeout", portnum(p));
|
|
port_set_delay_tmo(p);
|
|
delay_req_prune(p);
|
|
return port_delay_request(p) ? EV_FAULT_DETECTED : EV_NONE;
|
|
|
|
case FD_QUALIFICATION_TIMER:
|
|
pr_debug("port %hu: qualification timeout", portnum(p));
|
|
return EV_QUALIFICATION_TIMEOUT_EXPIRES;
|
|
|
|
case FD_MANNO_TIMER:
|
|
pr_debug("port %hu: master tx announce timeout", portnum(p));
|
|
port_set_manno_tmo(p);
|
|
return port_tx_announce(p, NULL) ? EV_FAULT_DETECTED : EV_NONE;
|
|
|
|
case FD_SYNC_TX_TIMER:
|
|
pr_debug("port %hu: master sync timeout", portnum(p));
|
|
port_set_sync_tx_tmo(p);
|
|
return port_tx_sync(p, NULL) ? EV_FAULT_DETECTED : EV_NONE;
|
|
|
|
case FD_UNICAST_SRV_TIMER:
|
|
pr_debug("port %hu: unicast service timeout", portnum(p));
|
|
return unicast_service_timer(p) ? EV_FAULT_DETECTED : EV_NONE;
|
|
|
|
case FD_UNICAST_REQ_TIMER:
|
|
pr_debug("port %hu: unicast request timeout", portnum(p));
|
|
return unicast_client_timer(p) ? EV_FAULT_DETECTED : EV_NONE;
|
|
|
|
case FD_RTNL:
|
|
pr_debug("port %hu: received link status notification", portnum(p));
|
|
rtnl_link_status(fd, p->name, port_link_status, p);
|
|
if (p->link_status == (LINK_UP | LINK_STATE_CHANGED))
|
|
return EV_FAULT_CLEARED;
|
|
else if ((p->link_status == (LINK_DOWN | LINK_STATE_CHANGED)) ||
|
|
(p->link_status & TS_LABEL_CHANGED))
|
|
return EV_FAULT_DETECTED;
|
|
else
|
|
return EV_NONE;
|
|
}
|
|
|
|
msg = msg_allocate();
|
|
if (!msg)
|
|
return EV_FAULT_DETECTED;
|
|
|
|
msg->hwts.type = p->timestamping;
|
|
|
|
cnt = transport_recv(p->trp, fd, msg);
|
|
if (cnt <= 0) {
|
|
pr_err("port %hu: recv message failed", portnum(p));
|
|
msg_put(msg);
|
|
return EV_FAULT_DETECTED;
|
|
}
|
|
err = msg_post_recv(msg, cnt);
|
|
if (err) {
|
|
switch (err) {
|
|
case -EBADMSG:
|
|
pr_err("port %hu: bad message", portnum(p));
|
|
break;
|
|
case -EPROTO:
|
|
pr_debug("port %hu: ignoring message", portnum(p));
|
|
break;
|
|
}
|
|
msg_put(msg);
|
|
return EV_NONE;
|
|
}
|
|
if (port_ignore(p, msg)) {
|
|
msg_put(msg);
|
|
return EV_NONE;
|
|
}
|
|
if (msg_sots_missing(msg) &&
|
|
!(p->timestamping == TS_P2P1STEP && msg_type(msg) == PDELAY_REQ)) {
|
|
pr_err("port %hu: received %s without timestamp",
|
|
portnum(p), msg_type_string(msg_type(msg)));
|
|
msg_put(msg);
|
|
return EV_NONE;
|
|
}
|
|
if (msg_sots_valid(msg)) {
|
|
ts_add(&msg->hwts.ts, -p->rx_timestamp_offset);
|
|
clock_check_ts(p->clock, tmv_to_nanoseconds(msg->hwts.ts));
|
|
}
|
|
|
|
switch (msg_type(msg)) {
|
|
case SYNC:
|
|
process_sync(p, msg);
|
|
break;
|
|
case DELAY_REQ:
|
|
if (process_delay_req(p, msg))
|
|
event = EV_FAULT_DETECTED;
|
|
break;
|
|
case PDELAY_REQ:
|
|
if (process_pdelay_req(p, msg))
|
|
event = EV_FAULT_DETECTED;
|
|
break;
|
|
case PDELAY_RESP:
|
|
if (process_pdelay_resp(p, msg))
|
|
event = EV_FAULT_DETECTED;
|
|
break;
|
|
case FOLLOW_UP:
|
|
process_follow_up(p, msg);
|
|
break;
|
|
case DELAY_RESP:
|
|
process_delay_resp(p, msg);
|
|
break;
|
|
case PDELAY_RESP_FOLLOW_UP:
|
|
process_pdelay_resp_fup(p, msg);
|
|
break;
|
|
case ANNOUNCE:
|
|
if (process_announce(p, msg))
|
|
event = EV_STATE_DECISION_EVENT;
|
|
break;
|
|
case SIGNALING:
|
|
if (process_signaling(p, msg)) {
|
|
event = EV_FAULT_DETECTED;
|
|
}
|
|
break;
|
|
case MANAGEMENT:
|
|
if (clock_manage(p->clock, p, msg))
|
|
event = EV_STATE_DECISION_EVENT;
|
|
break;
|
|
}
|
|
|
|
msg_put(msg);
|
|
return event;
|
|
}
|
|
|
|
int port_forward(struct port *p, struct ptp_message *msg)
|
|
{
|
|
int cnt;
|
|
cnt = transport_send(p->trp, &p->fda, TRANS_GENERAL, msg);
|
|
return cnt <= 0 ? -1 : 0;
|
|
}
|
|
|
|
int port_forward_to(struct port *p, struct ptp_message *msg)
|
|
{
|
|
int cnt;
|
|
cnt = transport_sendto(p->trp, &p->fda, TRANS_GENERAL, msg);
|
|
return cnt <= 0 ? -1 : 0;
|
|
}
|
|
|
|
int port_prepare_and_send(struct port *p, struct ptp_message *msg,
|
|
enum transport_event event)
|
|
{
|
|
int cnt;
|
|
|
|
if (msg_pre_send(msg)) {
|
|
return -1;
|
|
}
|
|
if (msg_unicast(msg)) {
|
|
cnt = transport_sendto(p->trp, &p->fda, event, msg);
|
|
} else {
|
|
cnt = transport_send(p->trp, &p->fda, event, msg);
|
|
}
|
|
if (cnt <= 0) {
|
|
return -1;
|
|
}
|
|
if (msg_sots_valid(msg)) {
|
|
ts_add(&msg->hwts.ts, p->tx_timestamp_offset);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct PortIdentity port_identity(struct port *p)
|
|
{
|
|
return p->portIdentity;
|
|
}
|
|
|
|
int port_number(struct port *p)
|
|
{
|
|
return portnum(p);
|
|
}
|
|
|
|
int port_link_status_get(struct port *p)
|
|
{
|
|
return !!(p->link_status & LINK_UP);
|
|
}
|
|
|
|
int port_manage(struct port *p, struct port *ingress, struct ptp_message *msg)
|
|
{
|
|
struct management_tlv *mgt;
|
|
UInteger16 target = msg->management.targetPortIdentity.portNumber;
|
|
|
|
if (target != portnum(p) && target != 0xffff) {
|
|
return 0;
|
|
}
|
|
mgt = (struct management_tlv *) msg->management.suffix;
|
|
|
|
switch (management_action(msg)) {
|
|
case GET:
|
|
if (port_management_get_response(p, ingress, mgt->id, msg))
|
|
return 1;
|
|
break;
|
|
case SET:
|
|
if (port_management_set(p, ingress, mgt->id, msg))
|
|
return 1;
|
|
break;
|
|
case COMMAND:
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
switch (mgt->id) {
|
|
case TLV_NULL_MANAGEMENT:
|
|
case TLV_CLOCK_DESCRIPTION:
|
|
case TLV_PORT_DATA_SET:
|
|
case TLV_LOG_ANNOUNCE_INTERVAL:
|
|
case TLV_ANNOUNCE_RECEIPT_TIMEOUT:
|
|
case TLV_LOG_SYNC_INTERVAL:
|
|
case TLV_VERSION_NUMBER:
|
|
case TLV_ENABLE_PORT:
|
|
case TLV_DISABLE_PORT:
|
|
case TLV_UNICAST_NEGOTIATION_ENABLE:
|
|
case TLV_UNICAST_MASTER_TABLE:
|
|
case TLV_UNICAST_MASTER_MAX_TABLE_SIZE:
|
|
case TLV_ACCEPTABLE_MASTER_TABLE_ENABLED:
|
|
case TLV_ALTERNATE_MASTER:
|
|
case TLV_TRANSPARENT_CLOCK_PORT_DATA_SET:
|
|
case TLV_DELAY_MECHANISM:
|
|
case TLV_LOG_MIN_PDELAY_REQ_INTERVAL:
|
|
port_management_send_error(p, ingress, msg, TLV_NOT_SUPPORTED);
|
|
break;
|
|
default:
|
|
port_management_send_error(p, ingress, msg, TLV_NO_SUCH_ID);
|
|
return -1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int port_management_error(struct PortIdentity pid, struct port *ingress,
|
|
struct ptp_message *req, Enumeration16 error_id)
|
|
{
|
|
struct management_error_status *mes;
|
|
struct management_tlv *mgt;
|
|
struct ptp_message *msg;
|
|
struct tlv_extra *extra;
|
|
int err = 0;
|
|
|
|
mgt = (struct management_tlv *) req->management.suffix;
|
|
msg = port_management_reply(pid, ingress, req);
|
|
if (!msg) {
|
|
return -1;
|
|
}
|
|
|
|
extra = msg_tlv_append(msg, sizeof(*mes));
|
|
if (!extra) {
|
|
msg_put(msg);
|
|
return -ENOMEM;
|
|
}
|
|
mes = (struct management_error_status *) extra->tlv;
|
|
mes->type = TLV_MANAGEMENT_ERROR_STATUS;
|
|
mes->length = 8;
|
|
mes->error = error_id;
|
|
mes->id = mgt->id;
|
|
|
|
err = port_prepare_and_send(ingress, msg, TRANS_GENERAL);
|
|
msg_put(msg);
|
|
return err;
|
|
}
|
|
|
|
static struct ptp_message *
|
|
port_management_construct(struct PortIdentity pid, struct port *ingress,
|
|
UInteger16 sequenceId,
|
|
struct PortIdentity *targetPortIdentity,
|
|
UInteger8 boundaryHops, uint8_t action)
|
|
{
|
|
struct ptp_message *msg;
|
|
|
|
msg = msg_allocate();
|
|
if (!msg)
|
|
return NULL;
|
|
|
|
msg->hwts.type = ingress->timestamping;
|
|
|
|
msg->header.tsmt = MANAGEMENT | ingress->transportSpecific;
|
|
msg->header.ver = PTP_VERSION;
|
|
msg->header.messageLength = sizeof(struct management_msg);
|
|
msg->header.domainNumber = clock_domain_number(ingress->clock);
|
|
msg->header.sourcePortIdentity = pid;
|
|
msg->header.sequenceId = sequenceId;
|
|
msg->header.control = CTL_MANAGEMENT;
|
|
msg->header.logMessageInterval = 0x7f;
|
|
|
|
if (targetPortIdentity)
|
|
msg->management.targetPortIdentity = *targetPortIdentity;
|
|
msg->management.startingBoundaryHops = boundaryHops;
|
|
msg->management.boundaryHops = boundaryHops;
|
|
|
|
switch (action) {
|
|
case GET: case SET:
|
|
msg->management.flags = RESPONSE;
|
|
break;
|
|
case COMMAND:
|
|
msg->management.flags = ACKNOWLEDGE;
|
|
break;
|
|
}
|
|
return msg;
|
|
}
|
|
|
|
struct ptp_message *port_management_reply(struct PortIdentity pid,
|
|
struct port *ingress,
|
|
struct ptp_message *req)
|
|
{
|
|
UInteger8 boundaryHops;
|
|
|
|
boundaryHops = req->management.startingBoundaryHops -
|
|
req->management.boundaryHops;
|
|
return port_management_construct(pid, ingress,
|
|
req->header.sequenceId,
|
|
&req->header.sourcePortIdentity,
|
|
boundaryHops,
|
|
management_action(req));
|
|
}
|
|
|
|
struct ptp_message *port_management_notify(struct PortIdentity pid,
|
|
struct port *port)
|
|
{
|
|
return port_management_construct(pid, port, 0, NULL, 1, GET);
|
|
}
|
|
|
|
void port_notify_event(struct port *p, enum notification event)
|
|
{
|
|
struct PortIdentity pid = port_identity(p);
|
|
struct ptp_message *msg;
|
|
int id;
|
|
|
|
switch (event) {
|
|
case NOTIFY_PORT_STATE:
|
|
id = TLV_PORT_DATA_SET;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
/* targetPortIdentity and sequenceId will be filled by
|
|
* clock_send_notification */
|
|
msg = port_management_notify(pid, p);
|
|
if (!msg)
|
|
return;
|
|
if (!port_management_fill_response(p, msg, id))
|
|
goto err;
|
|
if (msg_pre_send(msg))
|
|
goto err;
|
|
clock_send_notification(p->clock, msg, event);
|
|
err:
|
|
msg_put(msg);
|
|
}
|
|
|
|
struct port *port_open(int phc_index,
|
|
enum timestamp_type timestamping,
|
|
int number,
|
|
struct interface *interface,
|
|
struct clock *clock)
|
|
{
|
|
enum clock_type type = clock_type(clock);
|
|
struct config *cfg = clock_config(clock);
|
|
struct port *p = malloc(sizeof(*p));
|
|
enum transport_type transport;
|
|
int i;
|
|
|
|
if (!p) {
|
|
return NULL;
|
|
}
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
TAILQ_INIT(&p->tc_transmitted);
|
|
|
|
switch (type) {
|
|
case CLOCK_TYPE_ORDINARY:
|
|
case CLOCK_TYPE_BOUNDARY:
|
|
p->dispatch = bc_dispatch;
|
|
p->event = bc_event;
|
|
break;
|
|
case CLOCK_TYPE_P2P:
|
|
p->dispatch = p2p_dispatch;
|
|
p->event = p2p_event;
|
|
break;
|
|
case CLOCK_TYPE_E2E:
|
|
p->dispatch = e2e_dispatch;
|
|
p->event = e2e_event;
|
|
break;
|
|
case CLOCK_TYPE_MANAGEMENT:
|
|
goto err_port;
|
|
}
|
|
|
|
p->state_machine = clock_slave_only(clock) ? ptp_slave_fsm : ptp_fsm;
|
|
p->phc_index = phc_index;
|
|
p->jbod = config_get_int(cfg, interface->name, "boundary_clock_jbod");
|
|
transport = config_get_int(cfg, interface->name, "network_transport");
|
|
|
|
if (transport == TRANS_UDS) {
|
|
; /* UDS cannot have a PHC. */
|
|
} else if (!interface->ts_info.valid) {
|
|
pr_warning("port %d: get_ts_info not supported", number);
|
|
} else if (phc_index >= 0 && phc_index != interface->ts_info.phc_index) {
|
|
if (p->jbod) {
|
|
pr_warning("port %d: just a bunch of devices", number);
|
|
p->phc_index = interface->ts_info.phc_index;
|
|
} else {
|
|
pr_err("port %d: PHC device mismatch", number);
|
|
pr_err("port %d: /dev/ptp%d requested, ptp%d attached",
|
|
number, phc_index, interface->ts_info.phc_index);
|
|
goto err_port;
|
|
}
|
|
}
|
|
|
|
p->name = interface->name;
|
|
p->iface = interface;
|
|
p->asymmetry = config_get_int(cfg, p->name, "delayAsymmetry");
|
|
p->asymmetry <<= 16;
|
|
p->announce_span = transport == TRANS_UDS ? 0 : ANNOUNCE_SPAN;
|
|
p->follow_up_info = config_get_int(cfg, p->name, "follow_up_info");
|
|
p->freq_est_interval = config_get_int(cfg, p->name, "freq_est_interval");
|
|
p->net_sync_monitor = config_get_int(cfg, p->name, "net_sync_monitor");
|
|
p->path_trace_enabled = config_get_int(cfg, p->name, "path_trace_enabled");
|
|
p->tc_spanning_tree = config_get_int(cfg, p->name, "tc_spanning_tree");
|
|
p->rx_timestamp_offset = config_get_int(cfg, p->name, "ingressLatency");
|
|
p->rx_timestamp_offset <<= 16;
|
|
p->tx_timestamp_offset = config_get_int(cfg, p->name, "egressLatency");
|
|
p->tx_timestamp_offset <<= 16;
|
|
p->link_status = LINK_UP;
|
|
p->clock = clock;
|
|
p->trp = transport_create(cfg, transport);
|
|
if (!p->trp) {
|
|
goto err_port;
|
|
}
|
|
p->timestamping = timestamping;
|
|
p->portIdentity.clockIdentity = clock_identity(clock);
|
|
p->portIdentity.portNumber = number;
|
|
p->state = PS_INITIALIZING;
|
|
p->delayMechanism = config_get_int(cfg, p->name, "delay_mechanism");
|
|
p->versionNumber = PTP_VERSION;
|
|
|
|
if (number && unicast_client_claim_table(p)) {
|
|
goto err_port;
|
|
}
|
|
if (unicast_client_enabled(p) &&
|
|
config_set_section_int(cfg, p->name, "hybrid_e2e", 1)) {
|
|
goto err_port;
|
|
}
|
|
if (number && unicast_service_initialize(p)) {
|
|
goto err_port;
|
|
}
|
|
p->hybrid_e2e = config_get_int(cfg, p->name, "hybrid_e2e");
|
|
|
|
if (number && type == CLOCK_TYPE_P2P && p->delayMechanism != DM_P2P) {
|
|
pr_err("port %d: P2P TC needs P2P ports", number);
|
|
goto err_port;
|
|
}
|
|
if (number && type == CLOCK_TYPE_E2E && p->delayMechanism != DM_E2E) {
|
|
pr_err("port %d: E2E TC needs E2E ports", number);
|
|
goto err_port;
|
|
}
|
|
if (p->hybrid_e2e && p->delayMechanism != DM_E2E) {
|
|
pr_warning("port %d: hybrid_e2e only works with E2E", number);
|
|
}
|
|
if (p->net_sync_monitor && !p->hybrid_e2e) {
|
|
pr_warning("port %d: net_sync_monitor needs hybrid_e2e", number);
|
|
}
|
|
|
|
/* Set fault timeouts to a default value */
|
|
for (i = 0; i < FT_CNT; i++) {
|
|
p->flt_interval_pertype[i].type = FTMO_LOG2_SECONDS;
|
|
p->flt_interval_pertype[i].val = 4;
|
|
}
|
|
p->flt_interval_pertype[FT_BAD_PEER_NETWORK].type = FTMO_LINEAR_SECONDS;
|
|
p->flt_interval_pertype[FT_BAD_PEER_NETWORK].val =
|
|
config_get_int(cfg, p->name, "fault_badpeernet_interval");
|
|
|
|
p->flt_interval_pertype[FT_UNSPECIFIED].val =
|
|
config_get_int(cfg, p->name, "fault_reset_interval");
|
|
|
|
p->tsproc = tsproc_create(config_get_int(cfg, p->name, "tsproc_mode"),
|
|
config_get_int(cfg, p->name, "delay_filter"),
|
|
config_get_int(cfg, p->name, "delay_filter_length"));
|
|
if (!p->tsproc) {
|
|
pr_err("Failed to create time stamp processor");
|
|
goto err_transport;
|
|
}
|
|
p->nrate.ratio = 1.0;
|
|
|
|
port_clear_fda(p, N_POLLFD);
|
|
p->fault_fd = -1;
|
|
if (number) {
|
|
p->fault_fd = timerfd_create(CLOCK_MONOTONIC, 0);
|
|
if (p->fault_fd < 0) {
|
|
pr_err("timerfd_create failed: %m");
|
|
goto err_tsproc;
|
|
}
|
|
}
|
|
return p;
|
|
|
|
err_tsproc:
|
|
tsproc_destroy(p->tsproc);
|
|
err_transport:
|
|
transport_destroy(p->trp);
|
|
err_port:
|
|
free(p);
|
|
return NULL;
|
|
}
|
|
|
|
enum port_state port_state(struct port *port)
|
|
{
|
|
return port->state;
|
|
}
|
|
|
|
int port_state_update(struct port *p, enum fsm_event event, int mdiff)
|
|
{
|
|
enum port_state next = p->state_machine(p->state, event, mdiff);
|
|
|
|
if (PS_FAULTY == next) {
|
|
struct fault_interval i;
|
|
fault_interval(p, last_fault_type(p), &i);
|
|
if (clear_fault_asap(&i)) {
|
|
pr_notice("port %hu: clearing fault immediately", portnum(p));
|
|
next = p->state_machine(next, EV_FAULT_CLEARED, 0);
|
|
}
|
|
}
|
|
|
|
if (PS_INITIALIZING == next) {
|
|
/*
|
|
* This is a special case. Since we initialize the
|
|
* port immediately, we can skip right to listening
|
|
* state if all goes well.
|
|
*/
|
|
if (port_is_enabled(p)) {
|
|
port_disable(p);
|
|
}
|
|
if (port_initialize(p)) {
|
|
event = EV_FAULT_DETECTED;
|
|
} else {
|
|
event = EV_INIT_COMPLETE;
|
|
}
|
|
next = p->state_machine(next, event, 0);
|
|
}
|
|
|
|
if (next != p->state) {
|
|
port_show_transition(p, next, event);
|
|
p->state = next;
|
|
port_notify_event(p, NOTIFY_PORT_STATE);
|
|
unicast_client_state_changed(p);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|