phc2sys: split clock and node

Split members that apply to all synchronized clocks and members that apply
to an individual clock. Keep all clocks in a list, with a pointer to the
source clock. This will allow to support multiple clocks synchronization.

Signed-off-by: Jiri Benc <jbenc@redhat.com>
master
Jiri Benc 2014-06-11 21:35:13 +02:00 committed by Richard Cochran
parent 423eb54530
commit be4251a552
1 changed files with 221 additions and 182 deletions

403
phc2sys.c
View File

@ -28,6 +28,7 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <sys/ioctl.h> #include <sys/ioctl.h>
#include <sys/queue.h>
#include <sys/stat.h> #include <sys/stat.h>
#include <sys/types.h> #include <sys/types.h>
#include <unistd.h> #include <unistd.h>
@ -60,9 +61,6 @@
#define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC) #define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC)
struct clock; struct clock;
static int update_sync_offset(struct clock *clock);
static int clock_handle_leap(struct clock *clock, clockid_t src,
int64_t offset, uint64_t ts, int do_leap);
static clockid_t clock_open(char *device) static clockid_t clock_open(char *device)
{ {
@ -129,14 +127,24 @@ static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
} }
struct clock { struct clock {
LIST_ENTRY(clock) list;
clockid_t clkid; clockid_t clkid;
int sysoff_supported;
struct servo *servo; struct servo *servo;
enum servo_state servo_state; enum servo_state servo_state;
const char *source_label; const char *source_label;
struct stats *offset_stats; struct stats *offset_stats;
struct stats *freq_stats; struct stats *freq_stats;
struct stats *delay_stats; struct stats *delay_stats;
struct clockcheck *sanity_check;
};
struct node {
unsigned int stats_max_count; unsigned int stats_max_count;
int sanity_freq_limit;
enum servo_type servo_type;
int phc_readings;
double phc_interval;
int sync_offset; int sync_offset;
int sync_offset_direction; int sync_offset_direction;
int leap; int leap;
@ -145,10 +153,15 @@ struct clock {
struct pmc *pmc; struct pmc *pmc;
int pmc_ds_requested; int pmc_ds_requested;
uint64_t pmc_last_update; uint64_t pmc_last_update;
struct clockcheck *sanity_check; LIST_HEAD(clock_head, clock) clocks;
struct clock *master;
}; };
static void update_clock_stats(struct clock *clock, static int update_sync_offset(struct node *node);
static int clock_handle_leap(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int do_leap);
static void update_clock_stats(struct clock *clock, unsigned int max_count,
int64_t offset, double freq, int64_t delay) int64_t offset, double freq, int64_t delay)
{ {
struct stats_result offset_stats, freq_stats, delay_stats; struct stats_result offset_stats, freq_stats, delay_stats;
@ -158,7 +171,7 @@ static void update_clock_stats(struct clock *clock,
if (delay >= 0) if (delay >= 0)
stats_add_value(clock->delay_stats, delay); stats_add_value(clock->delay_stats, delay);
if (stats_get_num_values(clock->offset_stats) < clock->stats_max_count) if (stats_get_num_values(clock->offset_stats) < max_count)
return; return;
stats_get_result(clock->offset_stats, &offset_stats); stats_get_result(clock->offset_stats, &offset_stats);
@ -183,19 +196,19 @@ static void update_clock_stats(struct clock *clock,
stats_reset(clock->delay_stats); stats_reset(clock->delay_stats);
} }
static void update_clock(struct clock *clock, clockid_t src, static void update_clock(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int64_t delay, int64_t offset, uint64_t ts, int64_t delay,
int do_leap) int do_leap)
{ {
enum servo_state state; enum servo_state state;
double ppb; double ppb;
if (clock_handle_leap(clock, src, offset, ts, do_leap)) if (clock_handle_leap(node, clock, offset, ts, do_leap))
return; return;
if (clock->sync_offset_direction) if (node->sync_offset_direction)
offset += clock->sync_offset * NS_PER_SEC * offset += node->sync_offset * NS_PER_SEC *
clock->sync_offset_direction; node->sync_offset_direction;
if (clock->sanity_check && clockcheck_sample(clock->sanity_check, ts)) if (clock->sanity_check && clockcheck_sample(clock->sanity_check, ts))
servo_reset(clock->servo); servo_reset(clock->servo);
@ -221,15 +234,15 @@ static void update_clock(struct clock *clock, clockid_t src,
} }
if (clock->offset_stats) { if (clock->offset_stats) {
update_clock_stats(clock, offset, ppb, delay); update_clock_stats(clock, node->stats_max_count, offset, ppb, delay);
} else { } else {
if (delay >= 0) { if (delay >= 0) {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f " pr_info("%s offset %9" PRId64 " s%d freq %+7.0f "
"delay %6" PRId64, "delay %6" PRId64,
clock->source_label, offset, state, ppb, delay); node->master->source_label, offset, state, ppb, delay);
} else { } else {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f", pr_info("%s offset %9" PRId64 " s%d freq %+7.0f",
clock->source_label, offset, state, ppb); node->master->source_label, offset, state, ppb);
} }
} }
} }
@ -266,20 +279,20 @@ static int read_pps(int fd, int64_t *offset, uint64_t *ts)
return 1; return 1;
} }
static int do_pps_loop(struct clock *clock, int fd, static int do_pps_loop(struct node *node, struct clock *clock, int fd)
clockid_t src, int n_readings)
{ {
int64_t pps_offset, phc_offset, phc_delay; int64_t pps_offset, phc_offset, phc_delay;
uint64_t pps_ts, phc_ts; uint64_t pps_ts, phc_ts;
clockid_t src = node->master->clkid;
int do_leap; int do_leap;
clock->source_label = "pps"; node->master->source_label = "pps";
if (src == CLOCK_INVALID) { if (src == CLOCK_INVALID) {
/* The sync offset can't be applied with PPS alone. */ /* The sync offset can't be applied with PPS alone. */
clock->sync_offset_direction = 0; node->sync_offset_direction = 0;
} else { } else {
enable_pps_output(src); enable_pps_output(node->master->clkid);
} }
while (1) { while (1) {
@ -290,7 +303,7 @@ static int do_pps_loop(struct clock *clock, int fd,
/* If a PHC is available, use it to get the whole number /* If a PHC is available, use it to get the whole number
of seconds in the offset and PPS for the rest. */ of seconds in the offset and PPS for the rest. */
if (src != CLOCK_INVALID) { if (src != CLOCK_INVALID) {
if (!read_phc(src, clock->clkid, n_readings, if (!read_phc(src, clock->clkid, node->phc_readings,
&phc_offset, &phc_ts, &phc_delay)) &phc_offset, &phc_ts, &phc_delay))
return -1; return -1;
@ -308,60 +321,54 @@ static int do_pps_loop(struct clock *clock, int fd,
pps_offset = pps_ts - phc_ts; pps_offset = pps_ts - phc_ts;
} }
do_leap = update_sync_offset(clock); do_leap = update_sync_offset(node);
if (do_leap <= 0) if (do_leap < 0)
continue; continue;
update_clock(clock, src, pps_offset, pps_ts, -1, do_leap); update_clock(node, clock, pps_offset, pps_ts, -1, do_leap);
} }
close(fd); close(fd);
return 0; return 0;
} }
static int do_sysoff_loop(struct clock *clock, clockid_t src, static int do_loop(struct node *node)
struct timespec *interval, int n_readings)
{ {
struct timespec interval;
struct clock *clock;
uint64_t ts; uint64_t ts;
int64_t offset, delay; int64_t offset, delay;
int err = 0, fd = CLOCKID_TO_FD(src); int src_fd = CLOCKID_TO_FD(node->master->clkid);
int do_leap; int do_leap;
clock->source_label = "sys"; interval.tv_sec = node->phc_interval;
interval.tv_nsec = (node->phc_interval - interval.tv_sec) * 1e9;
while (1) { while (1) {
clock_nanosleep(CLOCK_MONOTONIC, 0, interval, NULL); clock_nanosleep(CLOCK_MONOTONIC, 0, &interval, NULL);
if (sysoff_measure(fd, n_readings, &offset, &ts, &delay)) { do_leap = update_sync_offset(node);
err = -1; if (do_leap < 0)
break; continue;
LIST_FOREACH(clock, &node->clocks, list) {
if (clock == node->master)
continue;
if (clock->clkid == CLOCK_REALTIME &&
node->master->sysoff_supported) {
/* use sysoff */
if (sysoff_measure(src_fd, node->phc_readings,
&offset, &ts, &delay))
return -1;
} else {
/* use phc */
if (!read_phc(node->master->clkid, clock->clkid,
node->phc_readings,
&offset, &ts, &delay))
continue;
}
update_clock(node, clock, offset, ts, delay, do_leap);
} }
do_leap = update_sync_offset(clock);
if (do_leap <= 0)
continue;
update_clock(clock, src, offset, ts, delay, do_leap);
} }
return err; return 0; /* unreachable */
}
static int do_phc_loop(struct clock *clock, clockid_t src,
struct timespec *interval, int n_readings)
{
uint64_t ts;
int64_t offset, delay;
int do_leap;
clock->source_label = "phc";
while (1) {
clock_nanosleep(CLOCK_MONOTONIC, 0, interval, NULL);
if (!read_phc(src, clock->clkid, n_readings,
&offset, &ts, &delay)) {
continue;
}
do_leap = update_sync_offset(clock);
if (do_leap <= 0)
continue;
update_clock(clock, src, offset, ts, delay, do_leap);
}
return 0;
} }
static int is_msg_mgt(struct ptp_message *msg) static int is_msg_mgt(struct ptp_message *msg)
@ -392,11 +399,11 @@ static void *get_mgt_data(struct ptp_message *msg)
return mgt->data; return mgt->data;
} }
static int init_pmc(struct clock *clock, int domain_number) static int init_pmc(struct node *node, int domain_number)
{ {
clock->pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0, node->pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0,
domain_number, 0, 1); domain_number, 0, 1);
if (!clock->pmc) { if (!node->pmc) {
pr_err("failed to create pmc"); pr_err("failed to create pmc");
return -1; return -1;
} }
@ -404,7 +411,7 @@ static int init_pmc(struct clock *clock, int domain_number)
return 0; return 0;
} }
static int run_pmc(struct clock *clock, int timeout, int ds_id, static int run_pmc(struct node *node, int timeout, int ds_id,
struct ptp_message **msg) struct ptp_message **msg)
{ {
#define N_FD 1 #define N_FD 1
@ -412,9 +419,9 @@ static int run_pmc(struct clock *clock, int timeout, int ds_id,
int cnt; int cnt;
while (1) { while (1) {
pollfd[0].fd = pmc_get_transport_fd(clock->pmc); pollfd[0].fd = pmc_get_transport_fd(node->pmc);
pollfd[0].events = POLLIN|POLLPRI; pollfd[0].events = POLLIN|POLLPRI;
if (!clock->pmc_ds_requested) if (!node->pmc_ds_requested)
pollfd[0].events |= POLLOUT; pollfd[0].events |= POLLOUT;
cnt = poll(pollfd, N_FD, timeout); cnt = poll(pollfd, N_FD, timeout);
@ -424,21 +431,21 @@ static int run_pmc(struct clock *clock, int timeout, int ds_id,
} }
if (!cnt) { if (!cnt) {
/* Request the data set again in the next run. */ /* Request the data set again in the next run. */
clock->pmc_ds_requested = 0; node->pmc_ds_requested = 0;
return 0; return 0;
} }
/* Send a new request if there are no pending messages. */ /* Send a new request if there are no pending messages. */
if ((pollfd[0].revents & POLLOUT) && if ((pollfd[0].revents & POLLOUT) &&
!(pollfd[0].revents & (POLLIN|POLLPRI))) { !(pollfd[0].revents & (POLLIN|POLLPRI))) {
pmc_send_get_action(clock->pmc, ds_id); pmc_send_get_action(node->pmc, ds_id);
clock->pmc_ds_requested = 1; node->pmc_ds_requested = 1;
} }
if (!(pollfd[0].revents & (POLLIN|POLLPRI))) if (!(pollfd[0].revents & (POLLIN|POLLPRI)))
continue; continue;
*msg = pmc_recv(clock->pmc); *msg = pmc_recv(node->pmc);
if (!*msg) if (!*msg)
continue; continue;
@ -449,12 +456,12 @@ static int run_pmc(struct clock *clock, int timeout, int ds_id,
*msg = NULL; *msg = NULL;
continue; continue;
} }
clock->pmc_ds_requested = 0; node->pmc_ds_requested = 0;
return 1; return 1;
} }
} }
static int run_pmc_wait_sync(struct clock *clock, int timeout) static int run_pmc_wait_sync(struct node *node, int timeout)
{ {
struct ptp_message *msg; struct ptp_message *msg;
int res; int res;
@ -462,7 +469,7 @@ static int run_pmc_wait_sync(struct clock *clock, int timeout)
Enumeration8 portState; Enumeration8 portState;
while (1) { while (1) {
res = run_pmc(clock, timeout, PORT_DATA_SET, &msg); res = run_pmc(node, timeout, PORT_DATA_SET, &msg);
if (res <= 0) if (res <= 0)
return res; return res;
@ -476,42 +483,42 @@ static int run_pmc_wait_sync(struct clock *clock, int timeout)
return 1; return 1;
} }
/* try to get more data sets (for other ports) */ /* try to get more data sets (for other ports) */
clock->pmc_ds_requested = 1; node->pmc_ds_requested = 1;
} }
} }
static int run_pmc_get_utc_offset(struct clock *clock, int timeout) static int run_pmc_get_utc_offset(struct node *node, int timeout)
{ {
struct ptp_message *msg; struct ptp_message *msg;
int res; int res;
struct timePropertiesDS *tds; struct timePropertiesDS *tds;
res = run_pmc(clock, timeout, TIME_PROPERTIES_DATA_SET, &msg); res = run_pmc(node, timeout, TIME_PROPERTIES_DATA_SET, &msg);
if (res <= 0) if (res <= 0)
return res; return res;
tds = (struct timePropertiesDS *)get_mgt_data(msg); tds = (struct timePropertiesDS *)get_mgt_data(msg);
if (tds->flags & PTP_TIMESCALE) { if (tds->flags & PTP_TIMESCALE) {
clock->sync_offset = tds->currentUtcOffset; node->sync_offset = tds->currentUtcOffset;
if (tds->flags & LEAP_61) if (tds->flags & LEAP_61)
clock->leap = 1; node->leap = 1;
else if (tds->flags & LEAP_59) else if (tds->flags & LEAP_59)
clock->leap = -1; node->leap = -1;
else else
clock->leap = 0; node->leap = 0;
} }
msg_put(msg); msg_put(msg);
return 1; return 1;
} }
static void close_pmc(struct clock *clock) static void close_pmc(struct node *node)
{ {
pmc_destroy(clock->pmc); pmc_destroy(node->pmc);
clock->pmc = NULL; node->pmc = NULL;
} }
/* Returns: -1 in case of error, 0 for normal sync, 1 to leap clock */ /* Returns: -1 in case of error, 0 for normal sync, 1 to leap clock */
static int update_sync_offset(struct clock *clock) static int update_sync_offset(struct node *node)
{ {
struct timespec tp; struct timespec tp;
uint64_t ts; uint64_t ts;
@ -523,40 +530,41 @@ static int update_sync_offset(struct clock *clock)
} }
ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec; ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec;
if (clock->pmc && if (node->pmc &&
!(ts > clock->pmc_last_update && !(ts > node->pmc_last_update &&
ts - clock->pmc_last_update < PMC_UPDATE_INTERVAL)) { ts - node->pmc_last_update < PMC_UPDATE_INTERVAL)) {
if (run_pmc_get_utc_offset(clock, 0) > 0) if (run_pmc_get_utc_offset(node, 0) > 0)
clock->pmc_last_update = ts; node->pmc_last_update = ts;
} }
/* Handle leap seconds. */ /* Handle leap seconds. */
if (!clock->leap && !clock->leap_set) if (!node->leap && !node->leap_set)
return 0; return 0;
clock_leap = leap_second_status(ts, clock->leap_set, clock_leap = leap_second_status(ts, node->leap_set,
&clock->leap, &clock->sync_offset); &node->leap, &node->sync_offset);
if (clock->leap_set != clock_leap) { if (node->leap_set != clock_leap) {
clock->leap_set = clock_leap; node->leap_set = clock_leap;
return 1; return 1;
} }
return 0; return 0;
} }
/* Returns: non-zero to skip clock update */ /* Returns: non-zero to skip clock update */
static int clock_handle_leap(struct clock *clock, clockid_t src, static int clock_handle_leap(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int do_leap) int64_t offset, uint64_t ts, int do_leap)
{ {
if (!clock->leap && !do_leap) if (!node->leap && !do_leap)
return 0; return 0;
if (clock->clkid != CLOCK_REALTIME && src != CLOCK_REALTIME) if (clock->clkid != CLOCK_REALTIME &&
node->master->clkid != CLOCK_REALTIME)
return 0; return 0;
/* If the system clock is the master clock, get a time stamp from /* If the system clock is the master clock, get a time stamp from
it, as it is the clock which will include the leap second. */ it, as it is the clock which will include the leap second. */
if (src == CLOCK_REALTIME) { if (node->master->clkid == CLOCK_REALTIME) {
struct timespec tp; struct timespec tp;
if (clock_gettime(CLOCK_REALTIME, &tp)) { if (clock_gettime(CLOCK_REALTIME, &tp)) {
pr_err("failed to read clock: %m"); pr_err("failed to read clock: %m");
@ -569,8 +577,8 @@ static int clock_handle_leap(struct clock *clock, clockid_t src,
target time. Ignore possible 1 second error in UTC offset. */ target time. Ignore possible 1 second error in UTC offset. */
if (clock->clkid == CLOCK_REALTIME && if (clock->clkid == CLOCK_REALTIME &&
clock->servo_state == SERVO_UNLOCKED) { clock->servo_state == SERVO_UNLOCKED) {
ts -= offset + clock->sync_offset * NS_PER_SEC * ts -= offset + node->sync_offset * NS_PER_SEC *
clock->sync_offset_direction; node->sync_offset_direction;
} }
/* Suspend clock updates in the last second before midnight. */ /* Suspend clock updates in the last second before midnight. */
@ -581,13 +589,79 @@ static int clock_handle_leap(struct clock *clock, clockid_t src,
if (do_leap) { if (do_leap) {
/* Only the system clock can leap. */ /* Only the system clock can leap. */
if (clock->clkid == CLOCK_REALTIME && clock->kernel_leap) if (clock->clkid == CLOCK_REALTIME && node->kernel_leap)
sysclk_set_leap(clock->leap_set); sysclk_set_leap(node->leap_set);
} }
return 0; return 0;
} }
static int clock_add(struct node *node, clockid_t clkid)
{
struct clock *c;
int max_ppb;
double ppb;
c = calloc(1, sizeof(*c));
if (!c) {
pr_err("failed to allocate memory for a clock");
return -1;
}
c->clkid = clkid;
c->servo_state = SERVO_UNLOCKED;
if (c->clkid == CLOCK_REALTIME)
c->source_label = "sys";
else
c->source_label = "phc";
if (node->stats_max_count > 0) {
c->offset_stats = stats_create();
c->freq_stats = stats_create();
c->delay_stats = stats_create();
if (!c->offset_stats ||
!c->freq_stats ||
!c->delay_stats) {
pr_err("failed to create stats");
return -1;
}
}
if (node->sanity_freq_limit) {
c->sanity_check = clockcheck_create(node->sanity_freq_limit);
if (!c->sanity_check) {
pr_err("failed to create clock check");
return -1;
}
}
clockadj_init(c->clkid);
ppb = clockadj_get_freq(c->clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(c->clkid, ppb);
if (c->clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(c->clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
c->servo = servo_create(node->servo_type, -ppb, max_ppb, 0);
servo_sync_interval(c->servo, node->phc_interval);
if (clkid != CLOCK_REALTIME)
c->sysoff_supported = (SYSOFF_SUPPORTED ==
sysoff_probe(CLOCKID_TO_FD(clkid),
node->phc_readings));
LIST_INSERT_HEAD(&node->clocks, c, list);
return 0;
}
static void usage(char *progname) static void usage(char *progname)
{ {
fprintf(stderr, fprintf(stderr,
@ -622,16 +696,16 @@ int main(int argc, char *argv[])
{ {
char *progname; char *progname;
clockid_t src = CLOCK_INVALID; clockid_t src = CLOCK_INVALID;
int c, domain_number = 0, phc_readings = 5, pps_fd = -1; clockid_t dst = CLOCK_REALTIME;
int max_ppb, r, wait_sync = 0, forced_sync_offset = 0; int c, domain_number = 0, pps_fd = -1;
int r, wait_sync = 0, forced_sync_offset = 0;
int print_level = LOG_INFO, use_syslog = 1, verbose = 0; int print_level = LOG_INFO, use_syslog = 1, verbose = 0;
int sanity_freq_limit = 200000000; double phc_rate;
enum servo_type servo = CLOCK_SERVO_PI; struct node node = {
double ppb, phc_interval = 1.0, phc_rate; .sanity_freq_limit = 200000000,
struct timespec phc_interval_tp; .servo_type = CLOCK_SERVO_PI,
struct clock dst_clock = { .phc_readings = 5,
.clkid = CLOCK_REALTIME, .phc_interval = 1.0,
.servo_state = SERVO_UNLOCKED,
.kernel_leap = 1, .kernel_leap = 1,
}; };
@ -645,7 +719,7 @@ int main(int argc, char *argv[])
"c:d:s:E:P:I:S:F:R:N:O:L:i:u:wn:xl:mqvh"))) { "c:d:s:E:P:I:S:F:R:N:O:L:i:u:wn:xl:mqvh"))) {
switch (c) { switch (c) {
case 'c': case 'c':
dst_clock.clkid = clock_open(optarg); dst = clock_open(optarg);
break; break;
case 'd': case 'd':
pps_fd = open(optarg, O_RDONLY); pps_fd = open(optarg, O_RDONLY);
@ -663,9 +737,9 @@ int main(int argc, char *argv[])
break; break;
case 'E': case 'E':
if (!strcasecmp(optarg, "pi")) { if (!strcasecmp(optarg, "pi")) {
servo = CLOCK_SERVO_PI; node.servo_type = CLOCK_SERVO_PI;
} else if (!strcasecmp(optarg, "linreg")) { } else if (!strcasecmp(optarg, "linreg")) {
servo = CLOCK_SERVO_LINREG; node.servo_type = CLOCK_SERVO_LINREG;
} else { } else {
fprintf(stderr, fprintf(stderr,
"invalid servo name %s\n", optarg); "invalid servo name %s\n", optarg);
@ -695,25 +769,25 @@ int main(int argc, char *argv[])
case 'R': case 'R':
if (get_arg_val_d(c, optarg, &phc_rate, 1e-9, DBL_MAX)) if (get_arg_val_d(c, optarg, &phc_rate, 1e-9, DBL_MAX))
return -1; return -1;
phc_interval = 1.0 / phc_rate; node.phc_interval = 1.0 / phc_rate;
break; break;
case 'N': case 'N':
if (get_arg_val_i(c, optarg, &phc_readings, 1, INT_MAX)) if (get_arg_val_i(c, optarg, &node.phc_readings, 1, INT_MAX))
return -1; return -1;
break; break;
case 'O': case 'O':
if (get_arg_val_i(c, optarg, &dst_clock.sync_offset, if (get_arg_val_i(c, optarg, &node.sync_offset,
INT_MIN, INT_MAX)) INT_MIN, INT_MAX))
return -1; return -1;
dst_clock.sync_offset_direction = -1; node.sync_offset_direction = -1;
forced_sync_offset = 1; forced_sync_offset = 1;
break; break;
case 'L': case 'L':
if (get_arg_val_i(c, optarg, &sanity_freq_limit, 0, INT_MAX)) if (get_arg_val_i(c, optarg, &node.sanity_freq_limit, 0, INT_MAX))
return -1; return -1;
break; break;
case 'u': case 'u':
if (get_arg_val_ui(c, optarg, &dst_clock.stats_max_count, if (get_arg_val_ui(c, optarg, &node.stats_max_count,
0, UINT_MAX)) 0, UINT_MAX))
return -1; return -1;
break; break;
@ -725,7 +799,7 @@ int main(int argc, char *argv[])
return -1; return -1;
break; break;
case 'x': case 'x':
dst_clock.kernel_leap = 0; node.kernel_leap = 0;
break; break;
case 'l': case 'l':
if (get_arg_val_i(c, optarg, &print_level, if (get_arg_val_i(c, optarg, &print_level,
@ -755,13 +829,13 @@ int main(int argc, char *argv[])
goto bad_usage; goto bad_usage;
} }
if (dst_clock.clkid == CLOCK_INVALID) { if (dst == CLOCK_INVALID) {
fprintf(stderr, fprintf(stderr,
"valid destination clock must be selected.\n"); "valid destination clock must be selected.\n");
goto bad_usage; goto bad_usage;
} }
if (pps_fd >= 0 && dst_clock.clkid != CLOCK_REALTIME) { if (pps_fd >= 0 && dst != CLOCK_REALTIME) {
fprintf(stderr, fprintf(stderr,
"cannot use a pps device unless destination is CLOCK_REALTIME\n"); "cannot use a pps device unless destination is CLOCK_REALTIME\n");
goto bad_usage; goto bad_usage;
@ -773,36 +847,21 @@ int main(int argc, char *argv[])
goto bad_usage; goto bad_usage;
} }
if (dst_clock.stats_max_count > 0) {
dst_clock.offset_stats = stats_create();
dst_clock.freq_stats = stats_create();
dst_clock.delay_stats = stats_create();
if (!dst_clock.offset_stats ||
!dst_clock.freq_stats ||
!dst_clock.delay_stats) {
fprintf(stderr, "failed to create stats");
return -1;
}
}
if (sanity_freq_limit) {
dst_clock.sanity_check = clockcheck_create(sanity_freq_limit);
if (!dst_clock.sanity_check) {
fprintf(stderr, "failed to create clock check");
return -1;
}
}
print_set_progname(progname); print_set_progname(progname);
print_set_verbose(verbose); print_set_verbose(verbose);
print_set_syslog(use_syslog); print_set_syslog(use_syslog);
print_set_level(print_level); print_set_level(print_level);
clock_add(&node, src);
node.master = LIST_FIRST(&node.clocks);
clock_add(&node, dst);
if (wait_sync) { if (wait_sync) {
if (init_pmc(&dst_clock, domain_number)) if (init_pmc(&node, domain_number))
return -1; return -1;
while (1) { while (1) {
r = run_pmc_wait_sync(&dst_clock, 1000); r = run_pmc_wait_sync(&node, 1000);
if (r < 0) if (r < 0)
return -1; return -1;
if (r > 0) if (r > 0)
@ -812,60 +871,40 @@ int main(int argc, char *argv[])
} }
if (!forced_sync_offset) { if (!forced_sync_offset) {
r = run_pmc_get_utc_offset(&dst_clock, 1000); r = run_pmc_get_utc_offset(&node, 1000);
if (r <= 0) { if (r <= 0) {
pr_err("failed to get UTC offset"); pr_err("failed to get UTC offset");
return -1; return -1;
} }
if (src != CLOCK_REALTIME && if (src != CLOCK_REALTIME &&
dst_clock.clkid == CLOCK_REALTIME) dst == CLOCK_REALTIME)
dst_clock.sync_offset_direction = 1; node.sync_offset_direction = 1;
else if (src == CLOCK_REALTIME && else if (src == CLOCK_REALTIME &&
dst_clock.clkid != CLOCK_REALTIME) dst != CLOCK_REALTIME)
dst_clock.sync_offset_direction = -1; node.sync_offset_direction = -1;
else else
dst_clock.sync_offset_direction = 0; node.sync_offset_direction = 0;
} }
if (forced_sync_offset || !dst_clock.sync_offset_direction) if (forced_sync_offset || !node.sync_offset_direction)
close_pmc(&dst_clock); close_pmc(&node);
} }
clockadj_init(dst_clock.clkid);
ppb = clockadj_get_freq(dst_clock.clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(dst_clock.clkid, ppb);
if (dst_clock.clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(dst_clock.clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
dst_clock.servo = servo_create(servo, -ppb, max_ppb, 0);
if (pps_fd >= 0) { if (pps_fd >= 0) {
servo_sync_interval(dst_clock.servo, 1.0); /* only one destination clock allowed with PPS until we
return do_pps_loop(&dst_clock, pps_fd, src, phc_readings); * implement a mean to specify PTP port to PPS mapping */
struct clock *dst_clock;
LIST_FOREACH(dst_clock, &node.clocks, list) {
if (dst_clock != node.master)
break;
}
servo_sync_interval(dst_clock->servo, 1.0);
return do_pps_loop(&node, dst_clock, pps_fd);
} }
servo_sync_interval(dst_clock.servo, phc_interval); return do_loop(&node);
phc_interval_tp.tv_sec = phc_interval;
phc_interval_tp.tv_nsec = (phc_interval - phc_interval_tp.tv_sec) * 1e9;
if (dst_clock.clkid == CLOCK_REALTIME && src != CLOCK_REALTIME &&
SYSOFF_SUPPORTED == sysoff_probe(CLOCKID_TO_FD(src), phc_readings))
return do_sysoff_loop(&dst_clock, src, &phc_interval_tp,
phc_readings);
return do_phc_loop(&dst_clock, src, &phc_interval_tp, phc_readings);
bad_usage: bad_usage:
usage(progname); usage(progname);