phc2sys: rearrange declarations

This just moves code around to have related functions together and forward
declaration at the beginning of the file. No code changes.

Signed-off-by: Jiri Benc <jbenc@redhat.com>
master
Jiri Benc 2014-06-11 21:35:15 +02:00 committed by Richard Cochran
parent 78aaef8a1a
commit b826ce530b
1 changed files with 132 additions and 134 deletions

266
phc2sys.c
View File

@ -60,72 +60,6 @@
#define PHC_PPS_OFFSET_LIMIT 10000000
#define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC)
struct clock;
static clockid_t clock_open(char *device)
{
struct sk_ts_info ts_info;
char phc_device[16];
int clkid;
/* check if device is CLOCK_REALTIME */
if (!strcasecmp(device, "CLOCK_REALTIME"))
return CLOCK_REALTIME;
/* check if device is valid phc device */
clkid = phc_open(device);
if (clkid != CLOCK_INVALID)
return clkid;
/* check if device is a valid ethernet device */
if (sk_get_ts_info(device, &ts_info) || !ts_info.valid) {
fprintf(stderr, "unknown clock %s: %m\n", device);
return CLOCK_INVALID;
}
if (ts_info.phc_index < 0) {
fprintf(stderr, "interface %s does not have a PHC\n", device);
return CLOCK_INVALID;
}
sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index);
clkid = phc_open(phc_device);
if (clkid == CLOCK_INVALID)
fprintf(stderr, "cannot open %s: %m\n", device);
return clkid;
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
struct clock {
LIST_ENTRY(clock) list;
clockid_t clkid;
@ -162,6 +96,138 @@ static int update_sync_offset(struct node *node);
static int clock_handle_leap(struct node *node, struct clock *clock,
int64_t offset, uint64_t ts, int do_leap);
static clockid_t clock_open(char *device)
{
struct sk_ts_info ts_info;
char phc_device[16];
int clkid;
/* check if device is CLOCK_REALTIME */
if (!strcasecmp(device, "CLOCK_REALTIME"))
return CLOCK_REALTIME;
/* check if device is valid phc device */
clkid = phc_open(device);
if (clkid != CLOCK_INVALID)
return clkid;
/* check if device is a valid ethernet device */
if (sk_get_ts_info(device, &ts_info) || !ts_info.valid) {
fprintf(stderr, "unknown clock %s: %m\n", device);
return CLOCK_INVALID;
}
if (ts_info.phc_index < 0) {
fprintf(stderr, "interface %s does not have a PHC\n", device);
return CLOCK_INVALID;
}
sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index);
clkid = phc_open(phc_device);
if (clkid == CLOCK_INVALID)
fprintf(stderr, "cannot open %s: %m\n", device);
return clkid;
}
static int clock_add(struct node *node, clockid_t clkid)
{
struct clock *c;
int max_ppb;
double ppb;
c = calloc(1, sizeof(*c));
if (!c) {
pr_err("failed to allocate memory for a clock");
return -1;
}
c->clkid = clkid;
c->servo_state = SERVO_UNLOCKED;
if (c->clkid == CLOCK_REALTIME) {
c->source_label = "sys";
c->is_utc = 1;
} else {
c->source_label = "phc";
}
if (node->stats_max_count > 0) {
c->offset_stats = stats_create();
c->freq_stats = stats_create();
c->delay_stats = stats_create();
if (!c->offset_stats ||
!c->freq_stats ||
!c->delay_stats) {
pr_err("failed to create stats");
return -1;
}
}
if (node->sanity_freq_limit) {
c->sanity_check = clockcheck_create(node->sanity_freq_limit);
if (!c->sanity_check) {
pr_err("failed to create clock check");
return -1;
}
}
clockadj_init(c->clkid);
ppb = clockadj_get_freq(c->clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(c->clkid, ppb);
if (c->clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(c->clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
c->servo = servo_create(node->servo_type, -ppb, max_ppb, 0);
servo_sync_interval(c->servo, node->phc_interval);
if (clkid != CLOCK_REALTIME)
c->sysoff_supported = (SYSOFF_SUPPORTED ==
sysoff_probe(CLOCKID_TO_FD(clkid),
node->phc_readings));
LIST_INSERT_HEAD(&node->clocks, c, list);
return 0;
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
static int64_t get_sync_offset(struct node *node, struct clock *dst)
{
int direction = node->forced_sync_offset;
@ -600,74 +666,6 @@ static int clock_handle_leap(struct node *node, struct clock *clock,
return 0;
}
static int clock_add(struct node *node, clockid_t clkid)
{
struct clock *c;
int max_ppb;
double ppb;
c = calloc(1, sizeof(*c));
if (!c) {
pr_err("failed to allocate memory for a clock");
return -1;
}
c->clkid = clkid;
c->servo_state = SERVO_UNLOCKED;
if (c->clkid == CLOCK_REALTIME) {
c->source_label = "sys";
c->is_utc = 1;
} else {
c->source_label = "phc";
}
if (node->stats_max_count > 0) {
c->offset_stats = stats_create();
c->freq_stats = stats_create();
c->delay_stats = stats_create();
if (!c->offset_stats ||
!c->freq_stats ||
!c->delay_stats) {
pr_err("failed to create stats");
return -1;
}
}
if (node->sanity_freq_limit) {
c->sanity_check = clockcheck_create(node->sanity_freq_limit);
if (!c->sanity_check) {
pr_err("failed to create clock check");
return -1;
}
}
clockadj_init(c->clkid);
ppb = clockadj_get_freq(c->clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(c->clkid, ppb);
if (c->clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(c->clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
c->servo = servo_create(node->servo_type, -ppb, max_ppb, 0);
servo_sync_interval(c->servo, node->phc_interval);
if (clkid != CLOCK_REALTIME)
c->sysoff_supported = (SYSOFF_SUPPORTED ==
sysoff_probe(CLOCKID_TO_FD(clkid),
node->phc_readings));
LIST_INSERT_HEAD(&node->clocks, c, list);
return 0;
}
static void usage(char *progname)
{
fprintf(stderr,