/** * @file config.c * @note Copyright (C) 2011 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include "config.h" #include "ether.h" #include "hash.h" #include "print.h" #include "util.h" enum config_section { GLOBAL_SECTION, PORT_SECTION, UNKNOWN_SECTION, }; enum config_type { CFG_TYPE_INT, CFG_TYPE_DOUBLE, }; typedef union { int i; double d; } any_t; #define CONFIG_LABEL_SIZE 32 #define CFG_ITEM_STATIC (1 << 0) /* statically allocated, not to be freed */ #define CFG_ITEM_LOCKED (1 << 1) /* command line value, may not be changed */ #define CFG_ITEM_PORT (1 << 2) /* item may appear in port sections */ struct config_item { char label[CONFIG_LABEL_SIZE]; enum config_type type; unsigned int flags; any_t val; any_t min; any_t max; }; #define N_CONFIG_ITEMS (sizeof(config_tab) / sizeof(config_tab[0])) #define CONFIG_ITEM_DBL(_label, _port, _default, _min, _max) { \ .label = _label, \ .type = CFG_TYPE_DOUBLE, \ .flags = _port ? CFG_ITEM_PORT : 0, \ .val.d = _default, \ .min.d = _min, \ .max.d = _max, \ } #define CONFIG_ITEM_INT(_label, _port, _default, _min, _max) { \ .label = _label, \ .type = CFG_TYPE_INT, \ .flags = _port ? CFG_ITEM_PORT : 0, \ .val.i = _default, \ .min.i = _min, \ .max.i = _max, \ } #define GLOB_ITEM_DBL(label, _default, min, max) \ CONFIG_ITEM_DBL(label, 0, _default, min, max) #define GLOB_ITEM_INT(label, _default, min, max) \ CONFIG_ITEM_INT(label, 0, _default, min, max) #define PORT_ITEM_DBL(label, _default, min, max) \ CONFIG_ITEM_DBL(label, 1, _default, min, max) #define PORT_ITEM_INT(label, _default, min, max) \ CONFIG_ITEM_INT(label, 1, _default, min, max) struct config_item config_tab[] = { GLOB_ITEM_INT("assume_two_step", 0, 0, 1), GLOB_ITEM_INT("check_fup_sync", 0, 0, 1), GLOB_ITEM_DBL("first_step_threshold", 0.00002, 0.0, DBL_MAX), GLOB_ITEM_INT("logging_level", LOG_INFO, PRINT_LEVEL_MIN, PRINT_LEVEL_MAX), GLOB_ITEM_INT("max_frequency", 900000000, 0, INT_MAX), GLOB_ITEM_DBL("step_threshold", 0.0, 0.0, DBL_MAX), GLOB_ITEM_INT("tx_timestamp_timeout", 1, 1, INT_MAX), PORT_ITEM_INT("udp_ttl", 1, 1, 255), GLOB_ITEM_INT("use_syslog", 1, 0, 1), GLOB_ITEM_INT("verbose", 0, 0, 1), }; static struct config_item *config_section_item(struct config *cfg, const char *section, const char *name) { char buf[CONFIG_LABEL_SIZE + MAX_IFNAME_SIZE]; snprintf(buf, sizeof(buf), "%s.%s", section, name); return hash_lookup(cfg->htab, buf); } static struct config_item *config_global_item(struct config *cfg, const char *name) { return config_section_item(cfg, "global", name); } static struct config_item *config_find_item(struct config *cfg, const char *section, const char *name) { struct config_item *ci; if (section) { ci = config_section_item(cfg, section, name); if (ci) { return ci; } } return config_global_item(cfg, name); } static struct config_item *config_item_alloc(struct config *cfg, const char *section, const char *name, enum config_type type) { struct config_item *ci; char buf[CONFIG_LABEL_SIZE + MAX_IFNAME_SIZE]; ci = calloc(1, sizeof(*ci)); if (!ci) { fprintf(stderr, "low memory\n"); return NULL; } strncpy(ci->label, name, CONFIG_LABEL_SIZE - 1); ci->type = type; snprintf(buf, sizeof(buf), "%s.%s", section, ci->label); if (hash_insert(cfg->htab, buf, ci)) { fprintf(stderr, "low memory or duplicate item %s\n", name); free(ci); return NULL; } return ci; } static void config_item_free(void *ptr) { struct config_item *ci = ptr; if (ci->flags & CFG_ITEM_STATIC) return; free(ci); } static enum parser_result parse_section_line(char *s, enum config_section *section) { if (!strcasecmp(s, "[global]")) { *section = GLOBAL_SECTION; } else if (s[0] == '[') { char c; *section = PORT_SECTION; /* Replace square brackets with white space. */ while (0 != (c = *s)) { if (c == '[' || c == ']') *s = ' '; s++; } } else return NOT_PARSED; return PARSED_OK; } static enum parser_result parse_item(struct config *cfg, const char *section, const char *option, const char *value) { struct config_item *cgi, *dst; enum parser_result r = BAD_VALUE; double df; int val; /* If there is no default value, then the option is bogus. */ cgi = config_global_item(cfg, option); if (!cgi) { return NOT_PARSED; } switch (cgi->type) { case CFG_TYPE_INT: r = get_ranged_int(value, &val, cgi->min.i, cgi->max.i); break; case CFG_TYPE_DOUBLE: r = get_ranged_double(value, &df, cgi->min.d, cgi->max.d); break; } if (r != PARSED_OK) { return r; } if (section) { if (!(cgi->flags & CFG_ITEM_PORT)) { return NOT_PARSED; } /* Create or update this port specific item. */ dst = config_section_item(cfg, section, option); if (!dst) { dst = config_item_alloc(cfg, section, option, cgi->type); if (!dst) { return NOT_PARSED; } } } else if (cgi->flags & CFG_ITEM_LOCKED) { /* This global option was set on the command line. */ return PARSED_OK; } else { /* Update the global default value. */ dst = cgi; } switch (dst->type) { case CFG_TYPE_INT: dst->val.i = val; break; case CFG_TYPE_DOUBLE: dst->val.d = df; break; } return PARSED_OK; } static enum parser_result parse_pod_setting(const char *option, const char *value, struct port_defaults *pod) { int val; unsigned int uval; enum parser_result r; if (!strcmp(option, "delayAsymmetry")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; pod->asymmetry = (Integer64) val << 16; } else if (!strcmp(option, "logAnnounceInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logAnnounceInterval = val; } else if (!strcmp(option, "logSyncInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logSyncInterval = val; } else if (!strcmp(option, "logMinDelayReqInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logMinDelayReqInterval = val; } else if (!strcmp(option, "logMinPdelayReqInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logMinPdelayReqInterval = val; } else if (!strcmp(option, "announceReceiptTimeout")) { r = get_ranged_uint(value, &uval, 2, UINT8_MAX); if (r != PARSED_OK) return r; pod->announceReceiptTimeout = uval; } else if (!strcmp(option, "syncReceiptTimeout")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; pod->syncReceiptTimeout = uval; } else if (!strcmp(option, "transportSpecific")) { r = get_ranged_uint(value, &uval, 0, 0x0F); if (r != PARSED_OK) return r; pod->transportSpecific = uval << 4; } else if (!strcmp(option, "path_trace_enabled")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; pod->path_trace_enabled = val; } else if (!strcmp(option, "follow_up_info")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; pod->follow_up_info = val; } else if (!strcmp(option, "neighborPropDelayThresh")) { r = get_ranged_uint(value, &uval, 0, UINT32_MAX); if (r != PARSED_OK) return r; pod->neighborPropDelayThresh = uval; } else if (!strcmp(option, "min_neighbor_prop_delay")) { r = get_ranged_int(value, &val, INT_MIN, -1); if (r != PARSED_OK) return r; pod->min_neighbor_prop_delay = val; } else if (!strcmp(option, "egressLatency")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; pod->tx_timestamp_offset = val; } else if (!strcmp(option, "ingressLatency")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; pod->rx_timestamp_offset = val; } else if (!strcmp(option, "fault_badpeernet_interval")) { pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].type = FTMO_LINEAR_SECONDS; if (!strcasecmp("ASAP", value)) { pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = 0; } else { r = get_ranged_int(value, &val, INT32_MIN, INT32_MAX); if (r != PARSED_OK) return r; pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = val; } } else if (!strcmp(option, "fault_reset_interval")) { pod->flt_interval_pertype[FT_UNSPECIFIED].type = FTMO_LOG2_SECONDS; if (!strcasecmp("ASAP", value)) { pod->flt_interval_pertype[FT_UNSPECIFIED].val = FRI_ASAP; } else { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->flt_interval_pertype[FT_UNSPECIFIED].val = val; } } else return NOT_PARSED; return PARSED_OK; } static enum parser_result parse_port_setting(struct config *cfg, const char *option, const char *value, struct interface *iface) { enum parser_result r; int val; r = parse_pod_setting(option, value, &iface->pod); if (r != NOT_PARSED) return r; if (!strcmp(option, "network_transport")) { if (!strcasecmp("L2", value)) iface->transport = TRANS_IEEE_802_3; else if (!strcasecmp("UDPv4", value)) iface->transport = TRANS_UDP_IPV4; else if (!strcasecmp("UDPv6", value)) iface->transport = TRANS_UDP_IPV6; else return BAD_VALUE; } else if (!strcmp(option, "delay_mechanism")) { if (!strcasecmp("Auto", value)) iface->dm = DM_AUTO; else if (!strcasecmp("E2E", value)) iface->dm = DM_E2E; else if (!strcasecmp("P2P", value)) iface->dm = DM_P2P; else return BAD_VALUE; } else if (!strcmp(option, "tsproc_mode")) { if (!strcasecmp("filter", value)) iface->tsproc_mode = TSPROC_FILTER; else if (!strcasecmp("raw", value)) iface->tsproc_mode = TSPROC_RAW; else if (!strcasecmp("filter_weight", value)) iface->tsproc_mode = TSPROC_FILTER_WEIGHT; else if (!strcasecmp("raw_weight", value)) iface->tsproc_mode = TSPROC_RAW_WEIGHT; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter")) { if (!strcasecmp("moving_average", value)) iface->delay_filter = FILTER_MOVING_AVERAGE; else if (!strcasecmp("moving_median", value)) iface->delay_filter = FILTER_MOVING_MEDIAN; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter_length")) { r = get_ranged_int(value, &val, 1, INT_MAX); if (r != PARSED_OK) return r; iface->delay_filter_length = val; } else if (!strcmp(option, "boundary_clock_jbod")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; iface->boundary_clock_jbod = val; } else return parse_item(cfg, iface->name, option, value); return PARSED_OK; } static int count_char(const char *str, char c) { int num = 0; char s; while ((s = *(str++))) { if (s == c) num++; } return num; } static enum parser_result parse_global_setting(const char *option, const char *value, struct config *cfg) { double df; int i, val, cfg_ignore = cfg->cfg_ignore; unsigned int uval; unsigned char mac[MAC_LEN]; unsigned char oui[OUI_LEN]; struct defaultDS *dds = &cfg->dds.dds; struct port_defaults *pod = &cfg->pod; enum parser_result r; r = parse_pod_setting(option, value, pod); if (r != NOT_PARSED) return r; if (!strcmp(option, "twoStepFlag")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (val) dds->flags |= DDS_TWO_STEP_FLAG; else dds->flags &= ~DDS_TWO_STEP_FLAG; } else if (!strcmp(option, "slaveOnly")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY)) { if (val) dds->flags |= DDS_SLAVE_ONLY; else dds->flags &= ~DDS_SLAVE_ONLY; } } else if (!strcmp(option, "gmCapable")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.grand_master_capable = val; } else if (!strcmp(option, "priority1")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->priority1 = uval; } else if (!strcmp(option, "priority2")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->priority2 = uval; } else if (!strcmp(option, "domainNumber")) { r = get_ranged_uint(value, &uval, 0, 127); if (r != PARSED_OK) return r; dds->domainNumber = uval; } else if (!strcmp(option, "clockClass")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY)) dds->clockQuality.clockClass = uval; } else if (!strcmp(option, "clockAccuracy")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->clockQuality.clockAccuracy = uval; } else if (!strcmp(option, "offsetScaledLogVariance")) { r = get_ranged_uint(value, &uval, 0, UINT16_MAX); if (r != PARSED_OK) return r; dds->clockQuality.offsetScaledLogVariance = uval; } else if (!strcmp(option, "free_running")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.free_running = val; } else if (!strcmp(option, "freq_est_interval")) { r = get_ranged_int(value, &val, 0, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.freq_est_interval = val; pod->freq_est_interval = val; } else if (!strcmp(option, "pi_proportional_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_const = df; } else if (!strcmp(option, "pi_integral_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_const = df; } else if (!strcmp(option, "pi_proportional_scale")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_scale = df; } else if (!strcmp(option, "pi_proportional_exponent")) { r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_exponent = df; } else if (!strcmp(option, "pi_proportional_norm_max")) { r = get_ranged_double(value, &df, DBL_MIN, 1.0); if (r != PARSED_OK) return r; *cfg->pi_proportional_norm_max = df; } else if (!strcmp(option, "pi_integral_scale")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_scale = df; } else if (!strcmp(option, "pi_integral_exponent")) { r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_exponent = df; } else if (!strcmp(option, "pi_integral_norm_max")) { r = get_ranged_double(value, &df, DBL_MIN, 2.0); if (r != PARSED_OK) return r; *cfg->pi_integral_norm_max = df; } else if (!strcmp(option, "sanity_freq_limit")) { r = get_ranged_int(value, &val, 0, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.sanity_freq_limit = val; } else if (!strcmp(option, "ntpshm_segment")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; *cfg->ntpshm_segment = val; } else if (!strcmp(option, "ptp_dst_mac")) { if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5])) return BAD_VALUE; for (i = 0; i < MAC_LEN; i++) cfg->ptp_dst_mac[i] = mac[i]; } else if (!strcmp(option, "p2p_dst_mac")) { if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5])) return BAD_VALUE; for (i = 0; i < MAC_LEN; i++) cfg->p2p_dst_mac[i] = mac[i]; } else if (!strcmp(option, "udp6_scope")) { r = get_ranged_uint(value, &uval, 0x00, 0x0F); if (r != PARSED_OK) return r; *cfg->udp6_scope = uval; } else if (!strcmp(option, "uds_address")) { if (strlen(value) > MAX_IFNAME_SIZE) return OUT_OF_RANGE; strncpy(cfg->uds_address, value, MAX_IFNAME_SIZE); } else if (!strcmp(option, "time_stamping")) { if (!(cfg_ignore & CFG_IGNORE_TIMESTAMPING)) { if (0 == strcasecmp("hardware", value)) cfg->timestamping = TS_HARDWARE; else if (0 == strcasecmp("software", value)) cfg->timestamping = TS_SOFTWARE; else if (0 == strcasecmp("legacy", value)) cfg->timestamping = TS_LEGACY_HW; else return BAD_VALUE; } } else if (!strcmp(option, "delay_mechanism")) { if (!(cfg_ignore & CFG_IGNORE_DM)) { if (0 == strcasecmp("E2E", value)) cfg->dm = DM_E2E; else if (0 == strcasecmp("P2P", value)) cfg->dm = DM_P2P; else if (0 == strcasecmp("Auto", value)) cfg->dm = DM_AUTO; else return BAD_VALUE; } } else if (!strcmp(option, "network_transport")) { if (!(cfg_ignore & CFG_IGNORE_TRANSPORT)) { if (!strcasecmp("UDPv4", value)) cfg->transport = TRANS_UDP_IPV4; else if (!strcasecmp("UDPv6", value)) cfg->transport = TRANS_UDP_IPV6; else if (!strcasecmp("L2", value)) cfg->transport = TRANS_IEEE_802_3; else return BAD_VALUE; } } else if (!strcmp(option, "clock_servo")) { if (!strcasecmp("pi", value)) cfg->clock_servo = CLOCK_SERVO_PI; else if (!strcasecmp("linreg", value)) cfg->clock_servo = CLOCK_SERVO_LINREG; else if (!strcasecmp("ntpshm", value)) cfg->clock_servo = CLOCK_SERVO_NTPSHM; else if (!strcasecmp("nullf", value)) cfg->clock_servo = CLOCK_SERVO_NULLF; else return BAD_VALUE; } else if (!strcmp(option, "productDescription")) { if (count_char(value, ';') != 2) return BAD_VALUE; if (static_ptp_text_set(&cfg->dds.clock_desc.productDescription, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "revisionData")) { if (count_char(value, ';') != 2) return BAD_VALUE; if (static_ptp_text_set(&cfg->dds.clock_desc.revisionData, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "userDescription")) { if (static_ptp_text_set(&cfg->dds.clock_desc.userDescription, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "manufacturerIdentity")) { if (OUI_LEN != sscanf(value, "%hhx:%hhx:%hhx", &oui[0], &oui[1], &oui[2])) return BAD_VALUE; for (i = 0; i < OUI_LEN; i++) cfg->dds.clock_desc.manufacturerIdentity[i] = oui[i]; } else if (!strcmp(option, "summary_interval")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.stats_interval = val; } else if (!strcmp(option, "kernel_leap")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.kernel_leap = val; } else if (!strcmp(option, "timeSource")) { r = get_ranged_int(value, &val, 0x10, 0xfe); if (r != PARSED_OK) return r; cfg->dds.time_source = val; } else if (!strcmp(option, "tsproc_mode")) { if (!strcasecmp("filter", value)) cfg->dds.tsproc_mode = TSPROC_FILTER; else if (!strcasecmp("raw", value)) cfg->dds.tsproc_mode = TSPROC_RAW; else if (!strcasecmp("filter_weight", value)) cfg->dds.tsproc_mode = TSPROC_FILTER_WEIGHT; else if (!strcasecmp("raw_weight", value)) cfg->dds.tsproc_mode = TSPROC_RAW_WEIGHT; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter")) { if (!strcasecmp("moving_average", value)) cfg->dds.delay_filter = FILTER_MOVING_AVERAGE; else if (!strcasecmp("moving_median", value)) cfg->dds.delay_filter = FILTER_MOVING_MEDIAN; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter_length")) { r = get_ranged_int(value, &val, 1, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.delay_filter_length = val; } else if (!strcmp(option, "boundary_clock_jbod")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.boundary_clock_jbod = val; } else return parse_item(cfg, NULL, option, value); return PARSED_OK; } static enum parser_result parse_setting_line(char *line, const char **option, const char **value) { *option = line; while (!isspace(line[0])) { if (line[0] == '\0') return NOT_PARSED; line++; } while (isspace(line[0])) { line[0] = '\0'; line++; } *value = line; return PARSED_OK; } static void check_deprecated_options(const char **option) { const char *new_option = NULL; if (!strcmp(*option, "pi_offset_const")) { new_option = "step_threshold"; } else if (!strcmp(*option, "pi_f_offset_const")) { new_option = "first_step_threshold"; } else if (!strcmp(*option, "pi_max_frequency")) { new_option = "max_frequency"; } if (new_option) { fprintf(stderr, "option %s is deprecated, please use %s instead\n", *option, new_option); *option = new_option; } } int config_read(char *name, struct config *cfg) { enum config_section current_section = UNKNOWN_SECTION; enum parser_result parser_res; FILE *fp; char buf[1024], *line, *c; const char *option, *value; struct interface *current_port = NULL; int line_num; fp = 0 == strncmp(name, "-", 2) ? stdin : fopen(name, "r"); if (!fp) { fprintf(stderr, "failed to open configuration file %s: %m\n", name); return -1; } for (line_num = 1; fgets(buf, sizeof(buf), fp); line_num++) { c = buf; /* skip whitespace characters */ while (isspace(*c)) c++; /* ignore empty lines and comments */ if (*c == '#' || *c == '\n' || *c == '\0') continue; line = c; /* remove trailing whitespace characters and \n */ c += strlen(line) - 1; while (c > line && (*c == '\n' || isspace(*c))) *c-- = '\0'; if (parse_section_line(line, ¤t_section) == PARSED_OK) { if (current_section == PORT_SECTION) { char port[17]; if (1 != sscanf(line, " %16s", port)) { fprintf(stderr, "could not parse port name on line %d\n", line_num); goto parse_error; } current_port = config_create_interface(port, cfg); if (!current_port) goto parse_error; config_init_interface(current_port, cfg); } continue; } switch (current_section) { case GLOBAL_SECTION: case PORT_SECTION: if (parse_setting_line(line, &option, &value)) { fprintf(stderr, "could not parse line %d in %s section\n", line_num, current_section == GLOBAL_SECTION ? "global" : current_port->name); goto parse_error; } check_deprecated_options(&option); if (current_section == GLOBAL_SECTION) parser_res = parse_global_setting(option, value, cfg); else parser_res = parse_port_setting(cfg, option, value, current_port); switch (parser_res) { case PARSED_OK: break; case NOT_PARSED: fprintf(stderr, "unknown option %s at line %d in %s section\n", option, line_num, current_section == GLOBAL_SECTION ? "global" : current_port->name); goto parse_error; case BAD_VALUE: fprintf(stderr, "%s is a bad value for option %s at line %d\n", value, option, line_num); goto parse_error; case MALFORMED: fprintf(stderr, "%s is a malformed value for option %s at line %d\n", value, option, line_num); goto parse_error; case OUT_OF_RANGE: fprintf(stderr, "%s is an out of range value for option %s at line %d\n", value, option, line_num); goto parse_error; } break; case UNKNOWN_SECTION: fprintf(stderr, "line %d is not in a section\n", line_num); goto parse_error; default: continue; } } fclose(fp); return 0; parse_error: fprintf(stderr, "failed to parse configuration file %s\n", name); fclose(fp); return -2; } struct interface *config_create_interface(char *name, struct config *cfg) { struct interface *iface; /* only create each interface once (by name) */ STAILQ_FOREACH(iface, &cfg->interfaces, list) { if (0 == strncmp(name, iface->name, MAX_IFNAME_SIZE)) return iface; } iface = calloc(1, sizeof(struct interface)); if (!iface) { fprintf(stderr, "cannot allocate memory for a port\n"); return NULL; } strncpy(iface->name, name, MAX_IFNAME_SIZE); STAILQ_INSERT_TAIL(&cfg->interfaces, iface, list); return iface; } void config_init_interface(struct interface *iface, struct config *cfg) { iface->dm = cfg->dm; iface->transport = cfg->transport; memcpy(&iface->pod, &cfg->pod, sizeof(cfg->pod)); sk_get_ts_info(iface->name, &iface->ts_info); iface->delay_filter = cfg->dds.delay_filter; iface->delay_filter_length = cfg->dds.delay_filter_length; iface->boundary_clock_jbod = cfg->dds.boundary_clock_jbod; } int config_init(struct config *cfg) { char buf[CONFIG_LABEL_SIZE + 8]; struct config_item *ci; int i; cfg->htab = hash_create(); if (!cfg->htab) { return -1; } /* Populate the hash table with global defaults. */ for (i = 0; i < N_CONFIG_ITEMS; i++) { ci = &config_tab[i]; ci->flags |= CFG_ITEM_STATIC; snprintf(buf, sizeof(buf), "global.%s", ci->label); if (hash_insert(cfg->htab, buf, ci)) { fprintf(stderr, "duplicate item %s\n", ci->label); goto fail; } } /* Perform a Built In Self Test.*/ for (i = 0; i < N_CONFIG_ITEMS; i++) { ci = &config_tab[i]; ci = config_global_item(cfg, ci->label); if (ci != &config_tab[i]) { fprintf(stderr, "config BIST failed at %s\n", config_tab[i].label); goto fail; } } return 0; fail: hash_destroy(cfg->htab, NULL); return -1; } void config_destroy(struct config *cfg) { struct interface *iface; while ((iface = STAILQ_FIRST(&cfg->interfaces))) { STAILQ_REMOVE_HEAD(&cfg->interfaces, list); free(iface); } hash_destroy(cfg->htab, config_item_free); } double config_get_double(struct config *cfg, const char *section, const char *option) { struct config_item *ci = config_find_item(cfg, section, option); if (!ci || ci->type != CFG_TYPE_DOUBLE) { pr_err("bug: config option %s missing or invalid!", option); exit(-1); } pr_debug("config item %s.%s is %f", section, option, ci->val.d); return ci->val.d; } int config_get_int(struct config *cfg, const char *section, const char *option) { struct config_item *ci = config_find_item(cfg, section, option); if (!ci) { pr_err("bug: config option %s missing!", option); exit(-1); } switch (ci->type) { case CFG_TYPE_DOUBLE: pr_err("bug: config option %s type mismatch!", option); exit(-1); case CFG_TYPE_INT: break; } pr_debug("config item %s.%s is %d", section, option, ci->val.i); return ci->val.i; } int config_set_double(struct config *cfg, const char *option, double val) { struct config_item *ci = config_find_item(cfg, NULL, option); if (!ci || ci->type != CFG_TYPE_DOUBLE) { pr_err("bug: config option %s missing or invalid!", option); return -1; } ci->flags |= CFG_ITEM_LOCKED; ci->val.d = val; pr_debug("locked item global.%s as %f", option, ci->val.d); return 0; } int config_set_section_int(struct config *cfg, const char *section, const char *option, int val) { struct config_item *cgi, *dst; cgi = config_find_item(cfg, NULL, option); if (!cgi) { pr_err("bug: config option %s missing!", option); return -1; } switch (cgi->type) { case CFG_TYPE_DOUBLE: pr_err("bug: config option %s type mismatch!", option); return -1; case CFG_TYPE_INT: break; } if (!section) { cgi->flags |= CFG_ITEM_LOCKED; cgi->val.i = val; pr_debug("locked item global.%s as %d", option, cgi->val.i); return 0; } /* Create or update this port specific item. */ dst = config_section_item(cfg, section, option); if (!dst) { dst = config_item_alloc(cfg, section, option, cgi->type); if (!dst) { return -1; } } dst->val.i = val; pr_debug("section item %s.%s now %d", section, option, dst->val.i); return 0; }