/** * @file phc2sys.c * @brief Utility program to synchronize two clocks via a PPS. * @note Copyright (C) 2012 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "missing.h" #define KP 0.7 #define KI 0.3 #define NS_PER_SEC 1000000000LL #define max_ppb 512000 #define min_ppb -512000 static clockid_t clock_open(char *device) { int fd = open(device, O_RDWR); if (fd < 0) { fprintf(stderr, "cannot open %s: %m\n", device); return CLOCK_INVALID; } return FD_TO_CLOCKID(fd); } static void clock_ppb(clockid_t clkid, double ppb) { struct timex tx; memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_FREQUENCY; tx.freq = (long) (ppb * 65.536); if (clock_adjtime(clkid, &tx) < 0) fprintf(stderr, "failed to adjust the clock: %m\n"); } static void clock_step(clockid_t clkid, int64_t ns) { struct timex tx; int sign = 1; if (ns < 0) { sign = -1; ns *= -1; } memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_SETOFFSET | ADJ_NANO; tx.time.tv_sec = sign * (ns / NS_PER_SEC); tx.time.tv_usec = sign * (ns % NS_PER_SEC); /* * The value of a timeval is the sum of its fields, but the * field tv_usec must always be non-negative. */ if (tx.time.tv_usec < 0) { tx.time.tv_sec -= 1; tx.time.tv_usec += 1000000000; } if (clock_adjtime(clkid, &tx) < 0) fprintf(stderr, "failed to step clock: %m\n"); } static int read_phc(clockid_t clkid, clockid_t sysclk, int rdelay, int readings, int64_t *offset, uint64_t *ts) { struct timespec tdst1, tdst2, tsrc; int i; int64_t interval, best_interval = INT64_MAX; /* Pick the quickest clkid reading. */ for (i = 0; i < readings; i++) { if (clock_gettime(sysclk, &tdst1) || clock_gettime(clkid, &tsrc) || clock_gettime(sysclk, &tdst2)) { perror("clock_gettime"); return 0; } interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC + tdst2.tv_nsec - tdst1.tv_nsec; if (best_interval > interval) { best_interval = interval; *offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC + tdst1.tv_nsec - tsrc.tv_nsec + interval / 2 - rdelay; *ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec; } } return 1; } struct servo { uint64_t saved_ts; int64_t saved_offset; double drift; enum { SAMPLE_0, SAMPLE_1, SAMPLE_2, SAMPLE_3, SAMPLE_N } state; }; static struct servo servo; static void do_servo(struct servo *srv, clockid_t src, clockid_t dst, int64_t offset, uint64_t ts, double kp, double ki) { double ki_term, ppb; printf("s%d %lld.%09llu drift %.2f\n", srv->state, ts / NS_PER_SEC, ts % NS_PER_SEC, srv->drift); switch (srv->state) { case SAMPLE_0: clock_ppb(dst, 0.0); srv->saved_offset = offset; srv->saved_ts = ts; srv->state = SAMPLE_1; break; case SAMPLE_1: srv->state = SAMPLE_2; break; case SAMPLE_2: srv->state = SAMPLE_3; break; case SAMPLE_3: srv->drift = (offset - srv->saved_offset) * 1e9 / (ts - srv->saved_ts); clock_ppb(dst, -srv->drift); clock_step(dst, -offset); srv->state = SAMPLE_N; break; case SAMPLE_N: ki_term = ki * offset; ppb = kp * offset + srv->drift + ki_term; if (ppb < min_ppb) { ppb = min_ppb; } else if (ppb > max_ppb) { ppb = max_ppb; } else { srv->drift += ki_term; } clock_ppb(dst, -ppb); break; } } static int read_pps(int fd, int64_t *offset, uint64_t *ts) { struct pps_fdata pfd; pfd.timeout.sec = 10; pfd.timeout.nsec = 0; pfd.timeout.flags = ~PPS_TIME_INVALID; if (ioctl(fd, PPS_FETCH, &pfd)) { perror("ioctl PPS_FETCH"); return 0; } *ts = pfd.info.assert_tu.sec * NS_PER_SEC; *ts += pfd.info.assert_tu.nsec; *offset = *ts % NS_PER_SEC; if (*offset > NS_PER_SEC / 2) *offset -= NS_PER_SEC; return 1; } static void usage(char *progname) { fprintf(stderr, "\n" "usage: %s [options]\n\n" " -c [device] slave clock device, default CLOCK_REALTIME\n" " -d [device] master device, source of PPS events\n" " -h prints this message and exits\n" " -r [val] reading the PHC device takes 'val' nanoseconds\n" " -s [device] set the time from this PHC device\n" " -P [val] set proportional constant to 'val'\n" " -I [val] set integration constant to 'val'\n" " -R [val] set PHC update rate to 'val' Hz\n" " -N [val] set number of PHC readings per update\n" "\n", progname); } int main(int argc, char *argv[]) { double kp = KP, ki = KI; char *device = NULL, *progname; clockid_t src = CLOCK_INVALID, dst = CLOCK_REALTIME; uint64_t pps_ts, phc_ts; int64_t pps_offset, phc_offset; int c, fd = 0, rdelay = 0, phc_readings = 5, phc_rate = 1; /* Process the command line arguments. */ progname = strrchr(argv[0], '/'); progname = progname ? 1+progname : argv[0]; while (EOF != (c = getopt(argc, argv, "c:d:hr:s:P:I:R:N:"))) { switch (c) { case 'c': dst = clock_open(optarg); break; case 'd': device = optarg; break; case 'r': rdelay = atoi(optarg); break; case 's': src = clock_open(optarg); break; case 'P': kp = atof(optarg); break; case 'I': ki = atof(optarg); break; case 'R': phc_rate = atoi(optarg); break; case 'N': phc_readings = atoi(optarg); break; case 'h': usage(progname); return 0; default: usage(progname); return -1; } } if (!(device || src != CLOCK_INVALID) || dst == CLOCK_INVALID) { usage(progname); return -1; } if (device) { fd = open(device, O_RDONLY); if (fd < 0) { fprintf(stderr, "cannot open %s: %m\n", device); return -1; } } if (src != CLOCK_INVALID) { struct timespec now; if (clock_gettime(src, &now)) perror("clock_gettime"); if (clock_settime(dst, &now)) perror("clock_settime"); } while (1) { if (fd > 0) { if (!read_pps(fd, &pps_offset, &pps_ts)) continue; printf("pps %9lld ", pps_offset); } else usleep(1000000 / phc_rate); if (src != CLOCK_INVALID) { if (!read_phc(src, dst, rdelay, phc_readings, &phc_offset, &phc_ts)) continue; printf("phc %9lld ", phc_offset); } if (fd > 0) do_servo(&servo, src, dst, pps_offset, pps_ts, kp, ki); else do_servo(&servo, src, dst, phc_offset, phc_ts, kp, ki); } return 0; }