/** * @file phc2sys.c * @brief Utility program to synchronize two clocks via a PPS. * @note Copyright (C) 2012 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clockadj.h" #include "ds.h" #include "fsm.h" #include "missing.h" #include "pi.h" #include "pmc_common.h" #include "print.h" #include "servo.h" #include "sk.h" #include "stats.h" #include "sysoff.h" #include "tlv.h" #include "util.h" #include "version.h" #define KP 0.7 #define KI 0.3 #define NS_PER_SEC 1000000000LL #define max_ppb 512000 #define PHC_PPS_OFFSET_LIMIT 10000000 #define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC) struct clock; static int update_sync_offset(struct clock *clock, int64_t offset, uint64_t ts); static clockid_t clock_open(char *device) { int fd; if (device[0] != '/') { if (!strcasecmp(device, "CLOCK_REALTIME")) return CLOCK_REALTIME; fprintf(stderr, "unknown clock %s\n", device); return CLOCK_INVALID; } fd = open(device, O_RDWR); if (fd < 0) { fprintf(stderr, "cannot open %s: %m\n", device); return CLOCK_INVALID; } return FD_TO_CLOCKID(fd); } static int read_phc(clockid_t clkid, clockid_t sysclk, int readings, int64_t *offset, uint64_t *ts, int64_t *delay) { struct timespec tdst1, tdst2, tsrc; int i; int64_t interval, best_interval = INT64_MAX; /* Pick the quickest clkid reading. */ for (i = 0; i < readings; i++) { if (clock_gettime(sysclk, &tdst1) || clock_gettime(clkid, &tsrc) || clock_gettime(sysclk, &tdst2)) { pr_err("failed to read clock: %m"); return 0; } interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC + tdst2.tv_nsec - tdst1.tv_nsec; if (best_interval > interval) { best_interval = interval; *offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC + tdst1.tv_nsec - tsrc.tv_nsec + interval / 2; *ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec; } } *delay = best_interval; return 1; } struct clock { clockid_t clkid; struct servo *servo; enum servo_state servo_state; const char *source_label; struct stats *offset_stats; struct stats *freq_stats; struct stats *delay_stats; unsigned int stats_max_count; int sync_offset; int sync_offset_direction; int leap; int leap_set; int kernel_leap; struct pmc *pmc; int pmc_ds_idx; int pmc_ds_requested; uint64_t pmc_last_update; }; static void update_clock_stats(struct clock *clock, int64_t offset, double freq, int64_t delay) { struct stats_result offset_stats, freq_stats, delay_stats; stats_add_value(clock->offset_stats, offset); stats_add_value(clock->freq_stats, freq); if (delay >= 0) stats_add_value(clock->delay_stats, delay); if (stats_get_num_values(clock->offset_stats) < clock->stats_max_count) return; stats_get_result(clock->offset_stats, &offset_stats); stats_get_result(clock->freq_stats, &freq_stats); if (!stats_get_result(clock->delay_stats, &delay_stats)) { pr_info("rms %4.0f max %4.0f " "freq %+6.0f +/- %3.0f " "delay %5.0f +/- %3.0f", offset_stats.rms, offset_stats.max_abs, freq_stats.mean, freq_stats.stddev, delay_stats.mean, delay_stats.stddev); } else { pr_info("rms %4.0f max %4.0f " "freq %+6.0f +/- %3.0f", offset_stats.rms, offset_stats.max_abs, freq_stats.mean, freq_stats.stddev); } stats_reset(clock->offset_stats); stats_reset(clock->freq_stats); stats_reset(clock->delay_stats); } static void update_clock(struct clock *clock, int64_t offset, uint64_t ts, int64_t delay) { enum servo_state state; double ppb; if (update_sync_offset(clock, offset, ts)) return; if (clock->sync_offset_direction) offset += clock->sync_offset * NS_PER_SEC * clock->sync_offset_direction; ppb = servo_sample(clock->servo, offset, ts, &state); clock->servo_state = state; switch (state) { case SERVO_UNLOCKED: break; case SERVO_JUMP: clockadj_step(clock->clkid, -offset); /* Fall through. */ case SERVO_LOCKED: clockadj_set_freq(clock->clkid, -ppb); break; } if (clock->offset_stats) { update_clock_stats(clock, offset, ppb, delay); } else { if (delay >= 0) { pr_info("%s offset %9" PRId64 " s%d freq %+7.0f " "delay %6" PRId64, clock->source_label, offset, state, ppb, delay); } else { pr_info("%s offset %9" PRId64 " s%d freq %+7.0f", clock->source_label, offset, state, ppb); } } } static int read_pps(int fd, int64_t *offset, uint64_t *ts) { struct pps_fdata pfd; pfd.timeout.sec = 10; pfd.timeout.nsec = 0; pfd.timeout.flags = ~PPS_TIME_INVALID; if (ioctl(fd, PPS_FETCH, &pfd)) { pr_err("failed to fetch PPS: %m"); return 0; } *ts = pfd.info.assert_tu.sec * NS_PER_SEC; *ts += pfd.info.assert_tu.nsec; *offset = *ts % NS_PER_SEC; if (*offset > NS_PER_SEC / 2) *offset -= NS_PER_SEC; return 1; } static int do_pps_loop(struct clock *clock, int fd, clockid_t src, int n_readings) { int64_t pps_offset, phc_offset, phc_delay; uint64_t pps_ts, phc_ts; clock->source_label = "pps"; /* The sync offset can't be applied with PPS alone. */ if (src == CLOCK_INVALID) clock->sync_offset_direction = 0; while (1) { if (!read_pps(fd, &pps_offset, &pps_ts)) { continue; } /* If a PHC is available, use it to get the whole number of seconds in the offset and PPS for the rest. */ if (src != CLOCK_INVALID) { if (!read_phc(src, clock->clkid, n_readings, &phc_offset, &phc_ts, &phc_delay)) return -1; /* Convert the time stamp to the PHC time. */ phc_ts -= phc_offset; /* Check if it is close to the start of the second. */ if (phc_ts % NS_PER_SEC > PHC_PPS_OFFSET_LIMIT) { pr_warning("PPS is not in sync with PHC" " (0.%09lld)", phc_ts % NS_PER_SEC); continue; } phc_ts = phc_ts / NS_PER_SEC * NS_PER_SEC; pps_offset = pps_ts - phc_ts; } update_clock(clock, pps_offset, pps_ts, -1); } close(fd); return 0; } static int do_sysoff_loop(struct clock *clock, clockid_t src, int rate, int n_readings) { uint64_t ts; int64_t offset, delay; int err = 0, fd = CLOCKID_TO_FD(src); clock->source_label = "sys"; while (1) { usleep(1000000 / rate); if (sysoff_measure(fd, n_readings, &offset, &ts, &delay)) { err = -1; break; } update_clock(clock, offset, ts, delay); } return err; } static int do_phc_loop(struct clock *clock, clockid_t src, int rate, int n_readings) { uint64_t ts; int64_t offset, delay; clock->source_label = "phc"; while (1) { usleep(1000000 / rate); if (!read_phc(src, clock->clkid, n_readings, &offset, &ts, &delay)) { continue; } update_clock(clock, offset, ts, delay); } return 0; } static int is_msg_mgt(struct ptp_message *msg) { struct TLV *tlv; if (msg_type(msg) != MANAGEMENT) return 0; if (management_action(msg) != RESPONSE) return 0; if (msg->tlv_count != 1) return 0; tlv = (struct TLV *) msg->management.suffix; if (tlv->type != TLV_MANAGEMENT) return 0; return 1; } static int get_mgt_id(struct ptp_message *msg) { return ((struct management_tlv *) msg->management.suffix)->id; } static void *get_mgt_data(struct ptp_message *msg) { return ((struct management_tlv *) msg->management.suffix)->data; } static int init_pmc(struct clock *clock) { clock->pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0, 0, 0); if (!clock->pmc) { pr_err("failed to create pmc"); return -1; } return 0; } static int run_pmc(struct clock *clock, int timeout, int wait_sync, int get_utc_offset) { struct ptp_message *msg; void *data; #define N_FD 1 struct pollfd pollfd[N_FD]; int cnt, ds_done; #define N_ID 2 int ds_ids[N_ID] = { PORT_DATA_SET, TIME_PROPERTIES_DATA_SET }; while (clock->pmc_ds_idx < N_ID) { /* Check if the data set is really needed. */ if ((ds_ids[clock->pmc_ds_idx] == PORT_DATA_SET && !wait_sync) || (ds_ids[clock->pmc_ds_idx] == TIME_PROPERTIES_DATA_SET && !get_utc_offset)) { clock->pmc_ds_idx++; continue; } pollfd[0].fd = pmc_get_transport_fd(clock->pmc); pollfd[0].events = POLLIN|POLLPRI; if (!clock->pmc_ds_requested) pollfd[0].events |= POLLOUT; cnt = poll(pollfd, N_FD, timeout); if (cnt < 0) { pr_err("poll failed"); return -1; } if (!cnt) { /* Request the data set again in the next run. */ clock->pmc_ds_requested = 0; return 0; } /* Send a new request if there are no pending messages. */ if ((pollfd[0].revents & POLLOUT) && !(pollfd[0].revents & (POLLIN|POLLPRI))) { pmc_send_get_action(clock->pmc, ds_ids[clock->pmc_ds_idx]); clock->pmc_ds_requested = 1; } if (!(pollfd[0].revents & (POLLIN|POLLPRI))) continue; msg = pmc_recv(clock->pmc); if (!msg) continue; if (!is_msg_mgt(msg) || get_mgt_id(msg) != ds_ids[clock->pmc_ds_idx]) { msg_put(msg); continue; } data = get_mgt_data(msg); ds_done = 0; switch (get_mgt_id(msg)) { case PORT_DATA_SET: switch (((struct portDS *)data)->portState) { case PS_MASTER: case PS_SLAVE: ds_done = 1; break; } break; case TIME_PROPERTIES_DATA_SET: clock->sync_offset = ((struct timePropertiesDS *)data)-> currentUtcOffset; if (((struct timePropertiesDS *)data)->flags & LEAP_61) clock->leap = 1; else if (((struct timePropertiesDS *)data)->flags & LEAP_59) clock->leap = -1; else clock->leap = 0; ds_done = 1; break; } if (ds_done) { /* Proceed with the next data set. */ clock->pmc_ds_idx++; clock->pmc_ds_requested = 0; } msg_put(msg); } clock->pmc_ds_idx = 0; return 1; } static void close_pmc(struct clock *clock) { pmc_destroy(clock->pmc); clock->pmc = NULL; } static int update_sync_offset(struct clock *clock, int64_t offset, uint64_t ts) { int clock_leap; if (clock->pmc && !(ts > clock->pmc_last_update && ts - clock->pmc_last_update < PMC_UPDATE_INTERVAL)) { if (run_pmc(clock, 0, 0, 1) > 0) clock->pmc_last_update = ts; } /* Handle leap seconds. */ if (!clock->leap && !clock->leap_set) return 0; /* If the system clock is the master clock, get a time stamp from it, as it is the clock which will include the leap second. */ if (clock->clkid != CLOCK_REALTIME) { struct timespec tp; if (clock_gettime(CLOCK_REALTIME, &tp)) { pr_err("failed to read clock: %m"); return -1; } ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec; } /* If the clock will be stepped, the time stamp has to be the target time. Ignore possible 1 second error in UTC offset. */ if (clock->clkid == CLOCK_REALTIME && clock->servo_state == SERVO_UNLOCKED) { ts -= offset + clock->sync_offset * NS_PER_SEC * clock->sync_offset_direction; } /* Suspend clock updates in the last second before midnight. */ if (is_utc_ambiguous(ts)) { pr_info("clock update suspended due to leap second"); return -1; } clock_leap = leap_second_status(ts, clock->leap_set, &clock->leap, &clock->sync_offset); if (clock->leap_set != clock_leap) { /* Only the system clock can leap. */ if (clock->clkid == CLOCK_REALTIME && clock->kernel_leap) clockadj_set_leap(clock->clkid, clock_leap); clock->leap_set = clock_leap; } return 0; } static void usage(char *progname) { fprintf(stderr, "\n" "usage: %s [options]\n\n" " -c [dev|name] slave clock (CLOCK_REALTIME)\n" " -d [dev] master PPS device\n" " -s [dev|name] master clock\n" " -i [iface] master clock by network interface\n" " -P [kp] proportional constant (0.7)\n" " -I [ki] integration constant (0.3)\n" " -S [step] step threshold (disabled)\n" " -R [rate] slave clock update rate in HZ (1)\n" " -N [num] number of master clock readings per update (5)\n" " -O [offset] slave-master time offset (0)\n" " -u [num] number of clock updates in summary stats (0)\n" " -w wait for ptp4l\n" " -x apply leap seconds by servo instead of kernel\n" " -h prints this message and exits\n" " -v prints the software version and exits\n" "\n", progname); } int main(int argc, char *argv[]) { char *progname, *ethdev = NULL; clockid_t src = CLOCK_INVALID; int c, phc_readings = 5, phc_rate = 1, pps_fd = -1; int r, wait_sync = 0, forced_sync_offset = 0; int print_level = LOG_INFO, use_syslog = 1, verbose = 0; double ppb; struct clock dst_clock = { .clkid = CLOCK_REALTIME, .servo_state = SERVO_UNLOCKED, .kernel_leap = 1, }; configured_pi_kp = KP; configured_pi_ki = KI; /* Process the command line arguments. */ progname = strrchr(argv[0], '/'); progname = progname ? 1+progname : argv[0]; while (EOF != (c = getopt(argc, argv, "c:d:hs:P:I:S:R:N:O:i:u:wxl:mqv"))) { switch (c) { case 'c': dst_clock.clkid = clock_open(optarg); break; case 'd': pps_fd = open(optarg, O_RDONLY); if (pps_fd < 0) { fprintf(stderr, "cannot open '%s': %m\n", optarg); return -1; } break; case 's': src = clock_open(optarg); break; case 'P': configured_pi_kp = atof(optarg); break; case 'I': configured_pi_ki = atof(optarg); break; case 'S': configured_pi_offset = atof(optarg); break; case 'R': phc_rate = atoi(optarg); break; case 'N': phc_readings = atoi(optarg); break; case 'O': dst_clock.sync_offset = atoi(optarg); dst_clock.sync_offset_direction = -1; forced_sync_offset = 1; break; case 'i': ethdev = optarg; break; case 'u': dst_clock.stats_max_count = atoi(optarg); break; case 'w': wait_sync = 1; break; case 'x': dst_clock.kernel_leap = 0; break; case 'l': print_level = atoi(optarg); break; case 'm': verbose = 1; break; case 'q': use_syslog = 0; break; case 'v': version_show(stdout); return 0; case 'h': usage(progname); return 0; default: usage(progname); return -1; } } if (src == CLOCK_INVALID && ethdev) { struct sk_ts_info ts_info; char phc_device[16]; if (sk_get_ts_info(ethdev, &ts_info) || !ts_info.valid) { fprintf(stderr, "can't autodiscover PHC device\n"); return -1; } if (ts_info.phc_index < 0) { fprintf(stderr, "interface %s doesn't have a PHC\n", ethdev); return -1; } sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index); src = clock_open(phc_device); } if (!(pps_fd >= 0 || src != CLOCK_INVALID) || dst_clock.clkid == CLOCK_INVALID || (pps_fd >= 0 && dst_clock.clkid != CLOCK_REALTIME)) { usage(progname); return -1; } if (dst_clock.stats_max_count > 0) { dst_clock.offset_stats = stats_create(); dst_clock.freq_stats = stats_create(); dst_clock.delay_stats = stats_create(); if (!dst_clock.offset_stats || !dst_clock.freq_stats || !dst_clock.delay_stats) { fprintf(stderr, "failed to create stats"); return -1; } } print_set_progname(progname); print_set_verbose(verbose); print_set_syslog(use_syslog); print_set_level(print_level); if (wait_sync) { if (init_pmc(&dst_clock)) return -1; while (1) { r = run_pmc(&dst_clock, 1000, wait_sync, !forced_sync_offset); if (r < 0) return -1; else if (r > 0) break; else pr_notice("Waiting for ptp4l..."); } if (!forced_sync_offset) { if (src != CLOCK_REALTIME && dst_clock.clkid == CLOCK_REALTIME) dst_clock.sync_offset_direction = 1; else if (src == CLOCK_REALTIME && dst_clock.clkid != CLOCK_REALTIME) dst_clock.sync_offset_direction = -1; else dst_clock.sync_offset_direction = 0; } if (forced_sync_offset || !dst_clock.sync_offset_direction) close_pmc(&dst_clock); } ppb = clockadj_get_freq(dst_clock.clkid); /* The reading may silently fail and return 0, reset the frequency to make sure ppb is the actual frequency of the clock. */ clockadj_set_freq(dst_clock.clkid, ppb); clockadj_set_leap(dst_clock.clkid, 0); dst_clock.servo = servo_create(CLOCK_SERVO_PI, -ppb, max_ppb, 0); if (pps_fd >= 0) return do_pps_loop(&dst_clock, pps_fd, src, phc_readings); if (dst_clock.clkid == CLOCK_REALTIME && SYSOFF_SUPPORTED == sysoff_probe(CLOCKID_TO_FD(src), phc_readings)) return do_sysoff_loop(&dst_clock, src, phc_rate, phc_readings); return do_phc_loop(&dst_clock, src, phc_rate, phc_readings); }