/** * @file port.c * @note Copyright (C) 2011 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include "bmc.h" #include "clock.h" #include "msg.h" #include "port.h" #include "print.h" #include "tmtab.h" #include "util.h" #define PTP_VERSION 2 #define LOG_MIN_DELAY_REQ_INTERVAL 0 /* allow Delay_Req every 1 sec */ #define LOG_ANNOUNCE_INTERVAL 1 /* every 2 sec */ #define ANNOUNCE_RECEIPT_TIMEOUT 3 /* wait for 3 missing announce */ #define LOG_SYNC_INTERVAL 0 /* every 1 sec */ #define LOG_MIN_PDELAY_REQ_INTERVAL 2 /* allow PDelay_Req every 4 sec */ struct port { char *name; struct clock *clock; struct transport *transport; enum timestamp_type timestamping; struct fdarray fda; struct foreign_clock *best; struct ptp_message *last_follow_up; struct ptp_message *last_sync; struct ptp_message *delay_req; struct { UInteger16 announce; UInteger16 delayreq; } seqnum; struct tmtab tmtab; /* portDS */ struct PortIdentity portIdentity; enum port_state state; /*portState*/ Integer8 logMinDelayReqInterval; TimeInterval peerMeanPathDelay; Integer8 logAnnounceInterval; UInteger8 announceReceiptTimeout; Integer8 logSyncInterval; Enumeration8 delayMechanism; Integer8 logMinPdelayReqInterval; unsigned int versionNumber; /*UInteger4*/ /* foreignMasterDS */ LIST_HEAD(fm, foreign_clock) foreign_masters; }; #define portnum(p) (p->portIdentity.portNumber) #define NSEC2SEC 1000000000LL static int announce_compare(struct ptp_message *m1, struct ptp_message *m2) { struct announce_msg *a = &m1->announce, *b = &m2->announce; int len = sizeof(a->grandmasterPriority1) + sizeof(a->grandmasterClockQuality) + sizeof(a->grandmasterPriority2) + sizeof(a->grandmasterIdentity) + sizeof(a->stepsRemoved); return memcmp(&a->grandmasterPriority1, &b->grandmasterPriority1, len); } static void announce_to_dataset(struct ptp_message *m, struct clock *c, struct dataset *out) { struct announce_msg *a = &m->announce; out->priority1 = a->grandmasterPriority1; out->identity = a->grandmasterIdentity; out->quality = a->grandmasterClockQuality; out->priority2 = a->grandmasterPriority2; out->stepsRemoved = a->stepsRemoved; out->sender = m->header.sourcePortIdentity; out->receiver = clock_parent_identity(c); } static int msg_current(struct ptp_message *m, struct timespec now) { int64_t t1, t2, tmo; t1 = m->ts.host.tv_sec * NSEC2SEC + m->ts.host.tv_nsec; t2 = now.tv_sec * NSEC2SEC + now.tv_nsec; tmo = 4 * (1 << m->header.logMessageInterval) * NSEC2SEC; return t2 - t1 < tmo; } static int msg_source_equal(struct ptp_message *m1, struct foreign_clock *fc) { struct PortIdentity *id1, *id2; id1 = &m1->header.sourcePortIdentity; id2 = &fc->dataset.sender; return 0 == memcmp(id1, id2, sizeof(*id1)); } static int pid_eq(struct PortIdentity *a, struct PortIdentity *b) { return 0 == memcmp(a, b, sizeof(*a)); } static void fc_clear(struct foreign_clock *fc) { struct ptp_message *m; while (fc->n_messages) { m = TAILQ_LAST(&fc->messages, messages); TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } } static void fc_prune(struct foreign_clock *fc) { struct timespec now; struct ptp_message *m; clock_gettime(CLOCK_MONOTONIC, &now); while (fc->n_messages > FOREIGN_MASTER_THRESHOLD) { m = TAILQ_LAST(&fc->messages, messages); TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } while (!TAILQ_EMPTY(&fc->messages)) { m = TAILQ_LAST(&fc->messages, messages); if (msg_current(m, now)) break; TAILQ_REMOVE(&fc->messages, m, list); fc->n_messages--; msg_put(m); } } static void ts_to_timestamp(struct timespec *src, struct Timestamp *dst) { dst->seconds_lsb = src->tv_sec; dst->seconds_msb = 0; dst->nanoseconds = src->tv_nsec; } /* * Returns non-zero if the announce message is different than last. */ static int add_foreign_master(struct port *p, struct ptp_message *m) { struct foreign_clock *fc; struct ptp_message *tmp; int broke_threshold = 0, diff = 0; LIST_FOREACH(fc, &p->foreign_masters, list) { if (msg_source_equal(m, fc)) break; } if (!fc) { pr_info("port %hu: new foreign master %s", portnum(p), pid2str(&m->header.sourcePortIdentity)); fc = malloc(sizeof(*fc)); if (!fc) { pr_err("low memory, failed to add foreign master"); return 0; } memset(fc, 0, sizeof(*fc)); LIST_INSERT_HEAD(&p->foreign_masters, fc, list); fc->port = p; fc->dataset.sender = m->header.sourcePortIdentity; /* We do not count this first message, see 9.5.3(b) */ return 0; } /* * If this message breaks the threshold, that is an important change. */ fc_prune(fc); if (FOREIGN_MASTER_THRESHOLD - 1 == fc->n_messages) broke_threshold = 1; /* * Okay, go ahead and add this announcement. */ msg_get(m); fc->n_messages++; TAILQ_INSERT_HEAD(&fc->messages, m, list); /* * Test if this announcement contains changed information. */ if (fc->n_messages > 1) { tmp = TAILQ_NEXT(m, list); diff = announce_compare(m, tmp); } return broke_threshold || diff; } static int port_clr_tmo(int fd) { struct itimerspec tmo = { {0, 0}, {0, 0} }; return timerfd_settime(fd, 0, &tmo, NULL); } static int port_set_announce_tmo(struct port *p) { struct itimerspec tmo = { {0, 0}, {0, 0} }; tmo.it_value.tv_sec = p->announceReceiptTimeout * (1 << p->logAnnounceInterval); return timerfd_settime(p->fda.fd[FD_ANNOUNCE_TIMER], 0, &tmo, NULL); } static int port_set_delay_tmo(struct port *p) { struct itimerspec tmo = { {0, 0}, {0, 0} }; int index = random() % TMTAB_MAX; tmo.it_value = p->tmtab.ts[index]; return timerfd_settime(p->fda.fd[FD_DELAY_TIMER], 0, &tmo, NULL); } static int port_set_manno_tmo(struct port *p) { struct itimerspec tmo = { {0, 0}, {0, 0} }; tmo.it_value.tv_sec = (1 << p->logAnnounceInterval); return timerfd_settime(p->fda.fd[FD_MANNO_TIMER], 0, &tmo, NULL); } static int port_set_qualification_tmo(struct port *p) { struct itimerspec tmo = { {0, 0}, {0, 0} }; tmo.it_value.tv_sec = (1 + clock_steps_removed(p->clock)) * (1 << p->logAnnounceInterval); return timerfd_settime(p->fda.fd[FD_QUALIFICATION_TIMER], 0, &tmo, NULL); } static void port_synchronize(struct port *p, struct timespec ingress_ts, struct timestamp origin_ts, Integer64 correction1, Integer64 correction2) { enum servo_state state; state = clock_synchronize(p->clock, ingress_ts, origin_ts, correction1, correction2); switch (state) { case SERVO_UNLOCKED: case SERVO_JUMP: port_dispatch(p, EV_SYNCHRONIZATION_FAULT); break; case SERVO_LOCKED: port_dispatch(p, EV_MASTER_CLOCK_SELECTED); break; } } static int port_delay_request(struct port *p) { struct ptp_message *msg; int cnt, pdulen; msg = msg_allocate(); if (!msg) return -1; memset(msg, 0, sizeof(*msg)); pdulen = sizeof(struct delay_req_msg); msg->hwts.type = p->timestamping; msg->header.tsmt = DELAY_REQ; msg->header.ver = PTP_VERSION; msg->header.messageLength = pdulen; msg->header.domainNumber = clock_domain_number(p->clock); msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.delayreq++; msg->header.control = CTL_DELAY_REQ; msg->header.logMessageInterval = 0x7f; if (msg_pre_send(msg)) goto out; cnt = p->transport->send(&p->fda, 1, msg, pdulen, &msg->hwts); if (cnt <= 0) goto out; if (p->delay_req) msg_put(p->delay_req); p->delay_req = msg; return 0; out: msg_put(msg); return -1; } static int port_tx_announce(struct port *p) { struct parentDS *dad = clock_parent_ds(p->clock); struct timePropertiesDS *tp = clock_time_properties(p->clock); struct ptp_message *msg; int cnt, err = 0, pdulen; msg = msg_allocate(); if (!msg) return -1; memset(msg, 0, sizeof(*msg)); pdulen = sizeof(struct announce_msg); msg->hwts.type = p->timestamping; msg->header.tsmt = ANNOUNCE; msg->header.ver = PTP_VERSION; msg->header.messageLength = pdulen; msg->header.domainNumber = clock_domain_number(p->clock); msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = p->seqnum.announce++; msg->header.control = CTL_OTHER; msg->header.logMessageInterval = p->logAnnounceInterval; if (tp->leap61) msg->header.flagField[1] |= LEAP_61; if (tp->leap59) msg->header.flagField[1] |= LEAP_59; if (tp->currentUtcOffsetValid) msg->header.flagField[1] |= UTC_OFF_VALID; if (tp->ptpTimescale) msg->header.flagField[1] |= PTP_TIMESCALE; if (tp->timeTraceable) msg->header.flagField[1] |= TIME_TRACEABLE; if (tp->frequencyTraceable) msg->header.flagField[1] |= FREQ_TRACEABLE; msg->announce.currentUtcOffset = tp->currentUtcOffset; msg->announce.grandmasterPriority1 = dad->grandmasterPriority1; msg->announce.grandmasterClockQuality = dad->grandmasterClockQuality; msg->announce.grandmasterPriority2 = dad->grandmasterPriority2; msg->announce.grandmasterIdentity = dad->grandmasterIdentity; msg->announce.stepsRemoved = clock_steps_removed(p->clock); msg->announce.timeSource = tp->timeSource; if (msg_pre_send(msg)) { err = -1; goto out; } cnt = p->transport->send(&p->fda, 0, msg, pdulen, &msg->hwts); if (cnt <= 0) err = -1; out: msg_put(msg); return err; } static int port_initialize(struct port *p) { int fd[N_TIMER_FDS], i; p->logMinDelayReqInterval = LOG_MIN_DELAY_REQ_INTERVAL; p->peerMeanPathDelay = 0; p->logAnnounceInterval = LOG_ANNOUNCE_INTERVAL; p->announceReceiptTimeout = ANNOUNCE_RECEIPT_TIMEOUT; p->logSyncInterval = LOG_SYNC_INTERVAL; p->logMinPdelayReqInterval = LOG_MIN_PDELAY_REQ_INTERVAL; tmtab_init(&p->tmtab, 1 + p->logMinDelayReqInterval); for (i = 0; i < N_TIMER_FDS; i++) { fd[i] = -1; } for (i = 0; i < N_TIMER_FDS; i++) { fd[i] = timerfd_create(CLOCK_MONOTONIC, 0); if (fd[i] < 0) { pr_err("timerfd_create: %s", strerror(errno)); goto no_timers; } } if (p->transport->open(p->name, &p->fda, p->timestamping)) goto no_tropen; for (i = 0; i < N_TIMER_FDS; i++) { p->fda.fd[FD_ANNOUNCE_TIMER + i] = fd[i]; p->fda.cnt++; } if (port_set_announce_tmo(p)) goto no_tmo; clock_install_fda(p->clock, p, p->fda); return 0; no_tmo: p->transport->close(&p->fda); no_tropen: no_timers: for (i = 0; i < N_TIMER_FDS; i++) { if (fd[i] >= 0) close(fd[i]); } return -1; } /* * Returns non-zero if the announce message is different than last. */ static int update_current_master(struct port *p, struct ptp_message *m) { struct foreign_clock *fc = p->best; struct ptp_message *tmp; if (!msg_source_equal(m, fc)) return add_foreign_master(p, m); port_set_announce_tmo(p); fc_prune(fc); msg_get(m); fc->n_messages++; TAILQ_INSERT_HEAD(&fc->messages, m, list); if (fc->n_messages > 1) { tmp = TAILQ_NEXT(m, list); return announce_compare(m, tmp); } return 0; } struct dataset *port_best_foreign(struct port *port) { return port->best ? &port->best->dataset : NULL; } /* message processing routines */ /* * Returns non-zero if the announce message is both qualified and different. */ static int process_announce(struct port *p, struct ptp_message *m) { int result = 0; switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: break; case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: result = add_foreign_master(p, m); break; case PS_UNCALIBRATED: case PS_SLAVE: result = update_current_master(p, m); break; } return result; } static int process_delay_req(struct port *p, struct ptp_message *m) { struct ptp_message *msg; int cnt, err = 0, pdulen; if (p->state != PS_MASTER && p->state != PS_GRAND_MASTER) return -1; msg = msg_allocate(); if (!msg) return -1; memset(msg, 0, sizeof(*msg)); pdulen = sizeof(struct delay_resp_msg); msg->hwts.type = p->timestamping; msg->header.tsmt = DELAY_RESP; msg->header.ver = PTP_VERSION; msg->header.messageLength = pdulen; msg->header.domainNumber = m->header.domainNumber; msg->header.correction = m->header.correction; msg->header.sourcePortIdentity = p->portIdentity; msg->header.sequenceId = m->header.sequenceId; msg->header.control = CTL_DELAY_RESP; msg->header.logMessageInterval = p->logMinDelayReqInterval; ts_to_timestamp(&m->hwts.ts, &msg->delay_resp.receiveTimestamp); msg->delay_resp.requestingPortIdentity = m->header.sourcePortIdentity; if (msg_pre_send(msg)) { err = -1; goto out; } cnt = p->transport->send(&p->fda, 0, msg, pdulen, NULL); if (cnt <= 0) err = -1; out: msg_put(msg); return err; } static void process_delay_resp(struct port *p, struct ptp_message *m) { struct delay_req_msg *req; struct delay_resp_msg *rsp = &m->delay_resp; if (!p->delay_req) return; req = &p->delay_req->delay_req; if (p->state != PS_UNCALIBRATED && p->state != PS_SLAVE) return; if (!pid_eq(&rsp->requestingPortIdentity, &req->hdr.sourcePortIdentity)) return; if (rsp->hdr.sequenceId != ntohs(req->hdr.sequenceId)) return; clock_path_delay(p->clock, p->delay_req->hwts.ts, m->ts.pdu, m->header.correction); if (p->logMinDelayReqInterval != rsp->hdr.logMessageInterval) { // TODO - validate the input. p->logMinDelayReqInterval = rsp->hdr.logMessageInterval; pr_info("port %hu: minimum delay request interval 2^%d", portnum(p), p->logMinDelayReqInterval); tmtab_init(&p->tmtab, 1 + p->logMinDelayReqInterval); } } static void process_follow_up(struct port *p, struct ptp_message *m) { struct ptp_message *syn; struct PortIdentity master, *pid; switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: return; case PS_UNCALIBRATED: case PS_SLAVE: break; } master = clock_parent_identity(p->clock); if (memcmp(&master, &m->header.sourcePortIdentity, sizeof(master))) return; /* * Handle out of order packets. The network stack might * provide the follow up _before_ the sync message. After all, * they can arrive on two different ports. In addition, time * stamping in PHY devices might delay the event packets. */ syn = p->last_sync; if (!syn || syn->header.sequenceId != m->header.sequenceId) { if (p->last_follow_up) msg_put(p->last_follow_up); msg_get(m); p->last_follow_up = m; return; } pid = &syn->header.sourcePortIdentity; if (memcmp(pid, &m->header.sourcePortIdentity, sizeof(*pid))) return; port_synchronize(p, syn->hwts.ts, m->ts.pdu, syn->header.correction, m->header.correction); } static void process_sync(struct port *p, struct ptp_message *m) { struct ptp_message *fup; struct PortIdentity master; switch (p->state) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: case PS_LISTENING: case PS_PRE_MASTER: case PS_MASTER: case PS_GRAND_MASTER: case PS_PASSIVE: return; case PS_UNCALIBRATED: case PS_SLAVE: break; } master = clock_parent_identity(p->clock); if (memcmp(&master, &m->header.sourcePortIdentity, sizeof(master))) { return; } // TODO - add asymmetry value to correctionField. if (one_step(m)) { port_synchronize(p, m->hwts.ts, m->ts.pdu, m->header.correction, 0); return; } /* * Check if follow up arrived first. */ fup = p->last_follow_up; if (fup && fup->header.sequenceId == m->header.sequenceId) { port_synchronize(p, m->hwts.ts, fup->ts.pdu, m->header.correction, fup->header.correction); return; } /* * Remember this sync for two step operation. */ if (p->last_sync) msg_put(p->last_sync); msg_get(m); p->last_sync = m; } /* public methods */ void port_close(struct port *p) { int i; p->transport->close(&p->fda); for (i = 0; i < N_TIMER_FDS; i++) { close(p->fda.fd[FD_ANNOUNCE_TIMER + i]); } free(p); } struct foreign_clock *port_compute_best(struct port *p) { struct foreign_clock *fc; struct ptp_message *tmp; p->best = NULL; LIST_FOREACH(fc, &p->foreign_masters, list) { tmp = TAILQ_FIRST(&fc->messages); if (!tmp) continue; fc_prune(fc); if (fc->n_messages < FOREIGN_MASTER_THRESHOLD) continue; announce_to_dataset(tmp, p->clock, &fc->dataset); if (!p->best) p->best = fc; else if (dscmp(&fc->dataset, &p->best->dataset) > 0) p->best = fc; else fc_clear(fc); } return p->best; } void port_dispatch(struct port *p, enum fsm_event event) { enum port_state next = clock_slave_only(p->clock) ? ptp_slave_fsm(p->state, event) : ptp_fsm(p->state, event); if (PS_INITIALIZING == next) { /* * This is a special case. Since we initialize the * port immediately, we can skip right to listening * state if all goes well. */ p->state = port_initialize(p) ? PS_FAULTY : PS_LISTENING; return; } if (next == p->state) return; pr_info("port %hu: %s to %s on %s", portnum(p), ps_str[p->state], ps_str[next], ev_str[event]); port_clr_tmo(p->fda.fd[FD_ANNOUNCE_TIMER]); port_clr_tmo(p->fda.fd[FD_DELAY_TIMER]); port_clr_tmo(p->fda.fd[FD_QUALIFICATION_TIMER]); port_clr_tmo(p->fda.fd[FD_MANNO_TIMER]); switch (next) { case PS_INITIALIZING: case PS_FAULTY: case PS_DISABLED: break; case PS_LISTENING: port_set_announce_tmo(p); break; case PS_PRE_MASTER: port_set_qualification_tmo(p); break; case PS_MASTER: case PS_GRAND_MASTER: port_set_manno_tmo(p); break; case PS_PASSIVE: port_set_announce_tmo(p); break; case PS_UNCALIBRATED: case PS_SLAVE: port_set_announce_tmo(p); port_set_delay_tmo(p); break; }; p->state = next; } enum fsm_event port_event(struct port *p, int fd_index) { enum fsm_event event = EV_NONE; struct ptp_message *msg; int cnt, fd = p->fda.fd[fd_index]; switch (fd_index) { case FD_ANNOUNCE_TIMER: pr_debug("port %hu: announce timeout", portnum(p)); if (p->best) fc_clear(p->best); port_set_announce_tmo(p); return EV_ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES; case FD_DELAY_TIMER: pr_debug("port %hu: delay timeout", portnum(p)); port_set_delay_tmo(p); return port_delay_request(p) ? EV_FAULT_DETECTED : EV_NONE; case FD_QUALIFICATION_TIMER: pr_debug("port %hu: qualification timeout", portnum(p)); return EV_QUALIFICATION_TIMEOUT_EXPIRES; case FD_MANNO_TIMER: pr_debug("port %hu: master tx announce timeout", portnum(p)); port_set_manno_tmo(p); return port_tx_announce(p) ? EV_FAULT_DETECTED : EV_NONE; } msg = msg_allocate(); if (!msg) return EV_FAULT_DETECTED; msg->hwts.type = p->timestamping; cnt = p->transport->recv(fd, msg, sizeof(*msg), &msg->hwts); if (cnt <= 0) return EV_FAULT_DETECTED; if (msg_post_recv(msg, cnt)) { pr_err("port %hu: bad message", portnum(p)); return EV_NONE; } switch (msg_type(msg)) { case SYNC: process_sync(p, msg); break; case DELAY_REQ: process_delay_req(p, msg); break; case PDELAY_REQ: case PDELAY_RESP: break; case FOLLOW_UP: process_follow_up(p, msg); break; case DELAY_RESP: process_delay_resp(p, msg); break; case PDELAY_RESP_FOLLOW_UP: break; case ANNOUNCE: if (process_announce(p, msg)) event = EV_STATE_DECISION_EVENT; break; case SIGNALING: case MANAGEMENT: break; } msg_put(msg); return event; } struct port *port_open(char *name, enum transport_type transport, enum timestamp_type timestamping, int number, enum delay_mechanism dm, struct clock *clock) { struct port *p = malloc(sizeof(*p)); if (!p) return NULL; memset(p, 0, sizeof(*p)); p->name = name; p->clock = clock; p->transport = transport_find(transport); if (!p->transport) { free(p); return NULL; } p->timestamping = timestamping; p->portIdentity.clockIdentity = clock_identity(clock); p->portIdentity.portNumber = number; p->state = PS_INITIALIZING; p->delayMechanism = dm; p->versionNumber = PTP_VERSION; return p; } enum port_state port_state(struct port *port) { return port->state; }