/** * @file config.c * @note Copyright (C) 2011 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include "config.h" #include "ether.h" #include "print.h" #include "util.h" enum config_section { GLOBAL_SECTION, PORT_SECTION, UNKNOWN_SECTION, }; static enum parser_result parse_section_line(char *s, enum config_section *section) { if (!strcasecmp(s, "[global]")) { *section = GLOBAL_SECTION; } else if (s[0] == '[') { char c; *section = PORT_SECTION; /* Replace square brackets with white space. */ while (0 != (c = *s)) { if (c == '[' || c == ']') *s = ' '; s++; } } else return NOT_PARSED; return PARSED_OK; } static enum parser_result parse_pod_setting(const char *option, const char *value, struct port_defaults *pod) { int val; unsigned int uval; enum parser_result r; if (!strcmp(option, "delayAsymmetry")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; pod->asymmetry = (Integer64) val << 16; } else if (!strcmp(option, "logAnnounceInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logAnnounceInterval = val; } else if (!strcmp(option, "logSyncInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logSyncInterval = val; } else if (!strcmp(option, "logMinDelayReqInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logMinDelayReqInterval = val; } else if (!strcmp(option, "logMinPdelayReqInterval")) { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->logMinPdelayReqInterval = val; } else if (!strcmp(option, "announceReceiptTimeout")) { r = get_ranged_uint(value, &uval, 2, UINT8_MAX); if (r != PARSED_OK) return r; pod->announceReceiptTimeout = uval; } else if (!strcmp(option, "syncReceiptTimeout")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; pod->syncReceiptTimeout = uval; } else if (!strcmp(option, "transportSpecific")) { r = get_ranged_uint(value, &uval, 0, 0x0F); if (r != PARSED_OK) return r; pod->transportSpecific = uval << 4; } else if (!strcmp(option, "path_trace_enabled")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; pod->path_trace_enabled = val; } else if (!strcmp(option, "follow_up_info")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; pod->follow_up_info = val; } else if (!strcmp(option, "neighborPropDelayThresh")) { r = get_ranged_uint(value, &uval, 0, UINT32_MAX); if (r != PARSED_OK) return r; pod->neighborPropDelayThresh = uval; } else if (!strcmp(option, "min_neighbor_prop_delay")) { r = get_ranged_int(value, &val, INT_MIN, -1); if (r != PARSED_OK) return r; pod->min_neighbor_prop_delay = val; } else if (!strcmp(option, "fault_badpeernet_interval")) { pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].type = FTMO_LINEAR_SECONDS; if (!strcasecmp("ASAP", value)) { pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = 0; } else { r = get_ranged_int(value, &val, INT32_MIN, INT32_MAX); if (r != PARSED_OK) return r; pod->flt_interval_pertype[FT_BAD_PEER_NETWORK].val = val; } } else if (!strcmp(option, "fault_reset_interval")) { pod->flt_interval_pertype[FT_UNSPECIFIED].type = FTMO_LOG2_SECONDS; if (!strcasecmp("ASAP", value)) { pod->flt_interval_pertype[FT_UNSPECIFIED].val = FRI_ASAP; } else { r = get_ranged_int(value, &val, INT8_MIN, INT8_MAX); if (r != PARSED_OK) return r; pod->flt_interval_pertype[FT_UNSPECIFIED].val = val; } } else return NOT_PARSED; return PARSED_OK; } static enum parser_result parse_port_setting(const char *option, const char *value, struct config *cfg, int p) { enum parser_result r; int val; r = parse_pod_setting(option, value, &cfg->iface[p].pod); if (r != NOT_PARSED) return r; if (!strcmp(option, "network_transport")) { if (!strcasecmp("L2", value)) cfg->iface[p].transport = TRANS_IEEE_802_3; else if (!strcasecmp("UDPv4", value)) cfg->iface[p].transport = TRANS_UDP_IPV4; else if (!strcasecmp("UDPv6", value)) cfg->iface[p].transport = TRANS_UDP_IPV6; else return BAD_VALUE; } else if (!strcmp(option, "delay_mechanism")) { if (!strcasecmp("Auto", value)) cfg->iface[p].dm = DM_AUTO; else if (!strcasecmp("E2E", value)) cfg->iface[p].dm = DM_E2E; else if (!strcasecmp("P2P", value)) cfg->iface[p].dm = DM_P2P; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter")) { if (!strcasecmp("moving_average", value)) cfg->iface[p].delay_filter = FILTER_MOVING_AVERAGE; else if (!strcasecmp("moving_median", value)) cfg->iface[p].delay_filter = FILTER_MOVING_MEDIAN; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter_length")) { r = get_ranged_int(value, &val, 1, INT_MAX); if (r != PARSED_OK) return r; cfg->iface[p].delay_filter_length = val; } else return NOT_PARSED; return PARSED_OK; } static int count_char(const char *str, char c) { int num = 0; char s; while ((s = *(str++))) { if (s == c) num++; } return num; } static enum parser_result parse_global_setting(const char *option, const char *value, struct config *cfg) { double df; int i, val, cfg_ignore = cfg->cfg_ignore; unsigned int uval; unsigned char mac[MAC_LEN]; unsigned char oui[OUI_LEN]; struct defaultDS *dds = &cfg->dds.dds; struct port_defaults *pod = &cfg->pod; enum parser_result r; r = parse_pod_setting(option, value, pod); if (r != NOT_PARSED) return r; if (!strcmp(option, "twoStepFlag")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (val) dds->flags |= DDS_TWO_STEP_FLAG; else dds->flags &= ~DDS_TWO_STEP_FLAG; } else if (!strcmp(option, "slaveOnly")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY)) { if (val) dds->flags |= DDS_SLAVE_ONLY; else dds->flags &= ~DDS_SLAVE_ONLY; } } else if (!strcmp(option, "gmCapable")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.grand_master_capable = val; } else if (!strcmp(option, "priority1")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->priority1 = uval; } else if (!strcmp(option, "priority2")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->priority2 = uval; } else if (!strcmp(option, "domainNumber")) { r = get_ranged_uint(value, &uval, 0, 127); if (r != PARSED_OK) return r; dds->domainNumber = uval; } else if (!strcmp(option, "clockClass")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_SLAVEONLY)) dds->clockQuality.clockClass = uval; } else if (!strcmp(option, "clockAccuracy")) { r = get_ranged_uint(value, &uval, 0, UINT8_MAX); if (r != PARSED_OK) return r; dds->clockQuality.clockAccuracy = uval; } else if (!strcmp(option, "offsetScaledLogVariance")) { r = get_ranged_uint(value, &uval, 0, UINT16_MAX); if (r != PARSED_OK) return r; dds->clockQuality.offsetScaledLogVariance = uval; } else if (!strcmp(option, "free_running")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.free_running = val; } else if (!strcmp(option, "freq_est_interval")) { r = get_ranged_int(value, &val, 0, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.freq_est_interval = val; pod->freq_est_interval = val; } else if (!strcmp(option, "assume_two_step")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; *cfg->assume_two_step = val; } else if (!strcmp(option, "tx_timestamp_timeout")) { r = get_ranged_int(value, &val, 1, INT_MAX); if (r != PARSED_OK) return r; *cfg->tx_timestamp_timeout = val; } else if (!strcmp(option, "check_fup_sync")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; *cfg->check_fup_sync = val; } else if (!strcmp(option, "pi_proportional_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_const = df; } else if (!strcmp(option, "pi_integral_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_const = df; } else if (!strcmp(option, "pi_proportional_scale")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_scale = df; } else if (!strcmp(option, "pi_proportional_exponent")) { r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_proportional_exponent = df; } else if (!strcmp(option, "pi_proportional_norm_max")) { r = get_ranged_double(value, &df, DBL_MIN, 1.0); if (r != PARSED_OK) return r; *cfg->pi_proportional_norm_max = df; } else if (!strcmp(option, "pi_integral_scale")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_scale = df; } else if (!strcmp(option, "pi_integral_exponent")) { r = get_ranged_double(value, &df, -DBL_MAX, DBL_MAX); if (r != PARSED_OK) return r; *cfg->pi_integral_exponent = df; } else if (!strcmp(option, "pi_integral_norm_max")) { r = get_ranged_double(value, &df, DBL_MIN, 2.0); if (r != PARSED_OK) return r; *cfg->pi_integral_norm_max = df; } else if (!strcmp(option, "step_threshold") || !strcmp(option, "pi_offset_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->step_threshold = df; } else if (!strcmp(option, "first_step_threshold") || !strcmp(option, "pi_f_offset_const")) { r = get_ranged_double(value, &df, 0.0, DBL_MAX); if (r != PARSED_OK) return r; *cfg->first_step_threshold = df; } else if (!strcmp(option, "max_frequency") || !strcmp(option, "pi_max_frequency")) { r = get_ranged_int(value, &val, 0, INT_MAX); if (r != PARSED_OK) return r; *cfg->max_frequency = val; } else if (!strcmp(option, "sanity_freq_limit")) { r = get_ranged_int(value, &val, 0, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.sanity_freq_limit = val; } else if (!strcmp(option, "ptp_dst_mac")) { if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5])) return BAD_VALUE; for (i = 0; i < MAC_LEN; i++) cfg->ptp_dst_mac[i] = mac[i]; } else if (!strcmp(option, "p2p_dst_mac")) { if (MAC_LEN != sscanf(value, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &mac[0], &mac[1], &mac[2], &mac[3], &mac[4], &mac[5])) return BAD_VALUE; for (i = 0; i < MAC_LEN; i++) cfg->p2p_dst_mac[i] = mac[i]; } else if (!strcmp(option, "udp6_scope")) { r = get_ranged_uint(value, &uval, 0x00, 0x0F); if (r != PARSED_OK) return r; *cfg->udp6_scope = uval; } else if (!strcmp(option, "uds_address")) { if (strlen(value) > MAX_IFNAME_SIZE) return OUT_OF_RANGE; strncpy(cfg->uds_address, value, MAX_IFNAME_SIZE); } else if (!strcmp(option, "logging_level")) { r = get_ranged_int(value, &val, PRINT_LEVEL_MIN, PRINT_LEVEL_MAX); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_PRINT_LEVEL)) { cfg->print_level = val; } } else if (!strcmp(option, "verbose")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_VERBOSE)) cfg->verbose = val; } else if (!strcmp(option, "use_syslog")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; if (!(cfg_ignore & CFG_IGNORE_USE_SYSLOG)) cfg->use_syslog = val; } else if (!strcmp(option, "time_stamping")) { if (!(cfg_ignore & CFG_IGNORE_TIMESTAMPING)) { if (0 == strcasecmp("hardware", value)) cfg->timestamping = TS_HARDWARE; else if (0 == strcasecmp("software", value)) cfg->timestamping = TS_SOFTWARE; else if (0 == strcasecmp("legacy", value)) cfg->timestamping = TS_LEGACY_HW; else return BAD_VALUE; } } else if (!strcmp(option, "delay_mechanism")) { if (!(cfg_ignore & CFG_IGNORE_DM)) { if (0 == strcasecmp("E2E", value)) cfg->dm = DM_E2E; else if (0 == strcasecmp("P2P", value)) cfg->dm = DM_P2P; else if (0 == strcasecmp("Auto", value)) cfg->dm = DM_AUTO; else return BAD_VALUE; } } else if (!strcmp(option, "network_transport")) { if (!(cfg_ignore & CFG_IGNORE_TRANSPORT)) { if (!strcasecmp("UDPv4", value)) cfg->transport = TRANS_UDP_IPV4; else if (!strcasecmp("UDPv6", value)) cfg->transport = TRANS_UDP_IPV6; else if (!strcasecmp("L2", value)) cfg->transport = TRANS_IEEE_802_3; else return BAD_VALUE; } } else if (!strcmp(option, "clock_servo")) { if (!strcasecmp("pi", value)) cfg->clock_servo = CLOCK_SERVO_PI; else return BAD_VALUE; } else if (!strcmp(option, "productDescription")) { if (count_char(value, ';') != 2) return BAD_VALUE; if (static_ptp_text_set(&cfg->dds.clock_desc.productDescription, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "revisionData")) { if (count_char(value, ';') != 2) return BAD_VALUE; if (static_ptp_text_set(&cfg->dds.clock_desc.revisionData, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "userDescription")) { if (static_ptp_text_set(&cfg->dds.clock_desc.userDescription, value) != 0) return BAD_VALUE; } else if (!strcmp(option, "manufacturerIdentity")) { if (OUI_LEN != sscanf(value, "%hhx:%hhx:%hhx", &oui[0], &oui[1], &oui[2])) return BAD_VALUE; for (i = 0; i < OUI_LEN; i++) cfg->dds.clock_desc.manufacturerIdentity[i] = oui[i]; } else if (!strcmp(option, "summary_interval")) { r = get_ranged_int(value, &val, INT_MIN, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.stats_interval = val; } else if (!strcmp(option, "kernel_leap")) { r = get_ranged_int(value, &val, 0, 1); if (r != PARSED_OK) return r; cfg->dds.kernel_leap = val; } else if (!strcmp(option, "timeSource")) { r = get_ranged_int(value, &val, 0x10, 0xfe); if (r != PARSED_OK) return r; cfg->dds.time_source = val; } else if (!strcmp(option, "delay_filter")) { if (!strcasecmp("moving_average", value)) cfg->dds.delay_filter = FILTER_MOVING_AVERAGE; else if (!strcasecmp("moving_median", value)) cfg->dds.delay_filter = FILTER_MOVING_MEDIAN; else return BAD_VALUE; } else if (!strcmp(option, "delay_filter_length")) { r = get_ranged_int(value, &val, 1, INT_MAX); if (r != PARSED_OK) return r; cfg->dds.delay_filter_length = val; } else return NOT_PARSED; return PARSED_OK; } static enum parser_result parse_setting_line(char *line, char **option, char **value) { *option = line; while (!isspace(line[0])) { if (line[0] == '\0') return NOT_PARSED; line++; } while (isspace(line[0])) { line[0] = '\0'; line++; } *value = line; return PARSED_OK; } int config_read(char *name, struct config *cfg) { enum config_section current_section = UNKNOWN_SECTION; enum parser_result parser_res; FILE *fp; char buf[1024], *line, *c, *option, *value; int current_port = 0, line_num; fp = 0 == strncmp(name, "-", 2) ? stdin : fopen(name, "r"); if (!fp) { fprintf(stderr, "failed to open configuration file %s: %m\n", name); return -1; } for (line_num = 1; fgets(buf, sizeof(buf), fp); line_num++) { c = buf; /* skip whitespace characters */ while (isspace(*c)) c++; /* ignore empty lines and comments */ if (*c == '#' || *c == '\n' || *c == '\0') continue; line = c; /* remove trailing whitespace characters and \n */ c += strlen(line) - 1; while (c > line && (*c == '\n' || isspace(*c))) *c-- = '\0'; if (parse_section_line(line, ¤t_section) == PARSED_OK) { if (current_section == PORT_SECTION) { char port[17]; if (1 != sscanf(line, " %16s", port)) { fprintf(stderr, "could not parse port name on line %d\n", line_num); goto parse_error; } current_port = config_create_interface(port, cfg); if (current_port < 0) goto parse_error; } continue; } switch (current_section) { case GLOBAL_SECTION: case PORT_SECTION: if (parse_setting_line(line, &option, &value)) { fprintf(stderr, "could not parse line %d in %s section\n", line_num, current_section == GLOBAL_SECTION ? "global" : cfg->iface[current_port].name); goto parse_error; } if (current_section == GLOBAL_SECTION) parser_res = parse_global_setting(option, value, cfg); else parser_res = parse_port_setting(option, value, cfg, current_port); switch (parser_res) { case PARSED_OK: break; case NOT_PARSED: fprintf(stderr, "unknown option %s at line %d in %s section\n", option, line_num, current_section == GLOBAL_SECTION ? "global" : cfg->iface[current_port].name); goto parse_error; case BAD_VALUE: fprintf(stderr, "%s is a bad value for option %s at line %d\n", value, option, line_num); goto parse_error; case MALFORMED: fprintf(stderr, "%s is a malformed value for option %s at line %d\n", value, option, line_num); goto parse_error; case OUT_OF_RANGE: fprintf(stderr, "%s is an out of range value for option %s at line %d\n", value, option, line_num); goto parse_error; } break; case UNKNOWN_SECTION: fprintf(stderr, "line %d is not in a section\n", line_num); goto parse_error; default: continue; } } fclose(fp); return 0; parse_error: fprintf(stderr, "failed to parse configuration file %s\n", name); fclose(fp); return -2; } /* returns the number matching that interface, or -1 on failure */ int config_create_interface(char *name, struct config *cfg) { struct interface *iface; int i; if (cfg->nports >= MAX_PORTS) { fprintf(stderr, "more than %d ports specified\n", MAX_PORTS); return -1; } iface = &cfg->iface[cfg->nports]; /* only create each interface once (by name) */ for(i = 0; i < cfg->nports; i++) { if (0 == strncmp(name, cfg->iface[i].name, MAX_IFNAME_SIZE)) return i; } strncpy(iface->name, name, MAX_IFNAME_SIZE); iface->dm = cfg->dm; iface->transport = cfg->transport; memcpy(&iface->pod, &cfg->pod, sizeof(cfg->pod)); sk_get_ts_info(name, &iface->ts_info); iface->delay_filter = cfg->dds.delay_filter; iface->delay_filter_length = cfg->dds.delay_filter_length; cfg->nports++; return i; }